

Utah NeuroRobotics Lab: Intuitive and Dexterous Control of Bionic Devices for Assistance and Rehabilitation

Presenter: Jacob A. George, Ph.D. jacob.george@utah.edu

1/25/2024

STROKENET GRAND ROUNDS

Brain-Computer Interfaces: from Invasive Neuroprostheses to Noninvasive Exoskeletons

Introduction

Paretic EMG

Multiple Movements

Force Regulation

Co-Adaptive Learning

Craig H. Neilsen Rehab Hospital Serves the Largest Portion of the US by Landmass

Introduction

Paretic EMG

Multiple Movements

Force Regulation

Co-Adaptive Learning

Translational Research at the Intersection of Robotics, Brain-Computer Interfaces, and AI

My Lab Was Established in Fall 2020 through the NIH Directors Award

Introduction

Paretic EMG

Multiple Movements

Force Regulation

Co-Adaptive Learning

Patient-Centered Rehabilitation through Dexterous & Adaptive Assistive Bionic Devices UNIVERSITY

Clinical Exoskeletons Provide Binary (open-close) Control of Two Movements

Introduction

Paretic EMG

Multiple Movements

Force Regulation

Co-Adaptive Learning

Current Control Strategies Apply a Binary Threshold to Rectified EMG

High Density EMG in a Common Wearable Formfactor

Three-Stage Approach to Restoring Intuitive and Dexterous Control

George et al., J. Neurosci. Meth., 2019

Introduction	Paretic EMG	Multiple Movements	Force Regulation	Co-Adaptive Learning	10

Spatiotemporal Analyses of Muscle Activity for Accurate & Robust Control

George et al., Myoelectric Controls, 2020

UNIVERSITY of UTAH

Deep Learning + EMG Provides A Powerful Estimate of Motor Intent

Ι

Introduction

Paretic EMG

Multiple Movements

Force Regulation

Co-Adaptive Learning

Deep Learning + EMG to Assist and Rehabilitate Stroke Patients

Intuitive and Dexterous Control of Bionic Devices for Assistance and Rehabilitation

1. Paretic EMG is Weak & Spastic

but we can still predict...

2. Multiple Movements & Gestures

and provide...

3. Fine Force Regulation

enabled through...

4. Co-Adaptive Learning

Paretic EMG

Multiple Movements

Force Regulation

Example of Spastic EMG Activity During Hand Opening

Time Constant of EMG Relaxation as a Measure of Spasticity Over Time

UNIVERSITY of UTAH

Time Constant Increases Bilaterally with Increasing MAS

EMG Recordings From Forearm and Wrist During Bilateral Gestures

UNIVERSITY of UTAH

EMG SNR Is Worse on the Paretic Side, and Worst at the Paretic Wrist

UNIVERSITY of UTAH

Wrist EMG Provides Better Gesture Classification, Even on the Paretic Side

Wrist EMG Provides Better Gesture Classification, Even on the Paretic Side

Introduction

Paretic EMG

Multiple Movements

Force Regulation

Co-Adaptive Learning

Enabling More Movements and Gestures

Original: Tripod Pinch

Upgrade: Tripod Pinch + Power Grasp

Introduction

Paretic EMG

MG Multipl

Multiple Movements

Force Regulation

Co-Adaptive Learning

Can Now Perform: Power Grasp

Introduction Paretic EMG Multiple Movements Force Regulation Co-Adaptive Learning 25

Can Now Perform: Wrist Flexion/Extension

Introduction

Paretic EMG

Multiple Movements

Force Regulation

Co-Adaptive Learning

Can Now Perform: Wrist Rotation

27

Introduction Paretic EMG Multiple Movements Force Regulation Co-Adaptive Learning

Intuitive and Dexterous Control of Bionic Devices for Assistance and Rehabilitation

1. Paretic EMG is Weak & Spastic

but we can still predict...

2. Multiple Movements & Gestures

and provide...

3. Fine Force Regulation

enabled through...

4. Co-Adaptive Learning

Introduction

Paretic EMG Mult

Multiple Movements

Force Regulation

Participants Can Control a Virtual Bionic Arm Despite No Physical Movement

Introduction

Paretic EMG

MG Multiple

Multiple Movements

Force Regulation

Co-Adaptive Learning

Similar Performance Between Healthy and Paretic Hand on Virtual Target-Touching Task

Similar Performance Between Healthy and Paretic Hand on Virtual Target-Touching Task

An Inclusive Metaverse for All, **Regardless of Physical Disability**

Introduction

Paretic EMG

Multiple Movements

Force Regulation

Co-Adaptive Learning

Similar Performance Between Healthy and Paretic Hand on Virtual Target-Touching Task

Proportional Control of MyoPro Exoskeleton

Introduction

Paretic EMG

Multiple Movements

Force Regulation

Co-Adaptive Learning

Patients Use the MyoPro Device Daily

Introduction

Paretic EMG

Multiple Movements

Force Regulation

Co-Adaptive Learning

Big Data & Deep Learning for Enhanced Assistive and Rehabilitative Devices

Multiple Movements

Introduction

Paretic EMG

Co-Adaptive Learning

36

Force Regulation

Algorithm Performance Improves with Increasing Data

UNIVERSITY of UTAH

Human Performance Improves over Time

Quantifying Learning Under Human Alone, Machine Alone, and Co-Adaptive Models

UNIVERSITY of UTAH

Co-Adaptive Learning

Co-Adaptive Learning

Intuitive and Dexterous Control of Bionic Devices for Assistance and Rehabilitation

1. Paretic EMG is Weak & Spastic

but we can still predict...

2. Multiple Movements & Gestures

and provide...

3. Fine Force Regulation

enabled through...

4. Co-Adaptive Learning

- \rightarrow Real-Time Monitoring
- \rightarrow Quantitative Diagnostics
- → Immediate Assistance
- → Increase Limb Usage
- → Real-Time Feedback
- → Improve Motor Control
- → Balance Assistance & Rehabilitation

Introduction	Paretic EMG	Multiple Movements	Force Regulation	Co-Adaptive Learning	43

Utah NeuroRobotics Lab

Research Funding

- NIH Directors Early Independence Award DP5OD029571-01
- NIH UL1TR002538
- NIH TL1TR002540

Engineering Approaches to Responsible Neural Interface Design Research • Award #2990450277899571

- DARPA BTO HAPTIX N66001-15-C-4017
- DARPA INI PO57482

- Institutional Startup
 Research
- Instrumentation Fund
- PIVOT Ascender Grant

- NSF CHS-1901236
- NSF CHS-1901492
- NSF NCS-FO-1533649
- NSF GRFP-1747505

DOD W81XWH-16-1-0701 • VA UU-2022-SAHAT-01

Industry Partners

Intuitive and Dexterous Control of Bionic Devices for Assistance and Rehabilitation

1. Paretic EMG is Weak & Spastic

but we can still predict...

2. Multiple Movements & Gestures

and provide...

3. Fine Force Regulation

enabled through...

4. Co-Adaptive Learning

- → Real-Time Monitoring
- \rightarrow Quantitative Diagnostics
- → Immediate Assistance
- → Increase Limb Usage
- → Real-Time Feedback
- → Improve Motor Control
- → Balance Assistance & Rehabilitation

Contact: Jacob.George@utah.edu