Protocol Title

Multi-arm Optimization of Stroke Thrombolysis (MOST): a blinded, randomized controlled adaptive, multi-arm, adjunctive-thrombolysis efficacy trial in ischemic stroke.

Study Chairs:
Opeolu Adeoye, MD MS (Lead), University of Cincinnati, Cincinnati, OH
Andrew Barreto, MD MS, University of Texas Houston, TX
Joseph Broderick, MD, University of Cincinnati, Cincinnati, OH
Colin Derdeyn MD, University of Iowa, Iowa City, IA
James Grotta, MD, Memorial Hermann Hospital Houston, TX

Supported by
The National Institute of Neurological Disorders and Stroke (NINDS)
U01 NS100699

Sponsor of IND:
Opeolu Adeoye, MD (IND #63550) and James Grotta, MD (IND #71172)

Protocol Number:
20181464

Protocol Version / Version Date
Version 2.1 – October 29, 2018
MOST

AGREEMENT ON THE PROTOCOL

By signing below I confirm that:

1) I have read this protocol and it contains all necessary details for conducting this study

AND

2) I agree to conduct the trial in compliance with this protocol and to adhere to all regulations that govern the conduct of the study.

Principal Investigator’s Signature ___________________________ Date __________

__

Principal Investigator’s Printed Name

__

Site Name

v2.1 2018-10-29
TABLE OF CONTENTS

1 STUDY OBJECTIVES ... 2
 1.1 Primary Objectives ... 2
 1.2 Secondary Objective .. 2

2 BACKGROUND .. 2
 2.1 Rationale .. 2
 2.2 Supporting Information and Prior Clinical Experience .. 3

3 STUDY DESIGN AND MANAGEMENT .. 5
 3.1 Study Design Overview .. 5
 3.2 Study Outcomes .. 6
 3.2.1 Primary Outcomes .. 6
 3.2.2 Secondary Outcomes .. 6
 3.2.3 Clinical Outcome Assessments – Blinded Determination of Day 90 mRS .. 7
 3.3 Imaging Acquisition and Analysis .. 7
 3.4 Manual of Procedures ... 7

4 SELECTION AND ENROLLMENT OF SUBJECTS ... 7
 4.1 Inclusion and Exclusion Criteria .. 7
 4.2 Study Enrollment Procedures ... 8
 4.3 Participating Sites .. 9

5 STUDY INTERVENTIONS .. 9
 5.1 Interventions, Administration and Duration .. 9
 5.2 Handling of Study Interventions and Blinding .. 9
 5.2.1 Blinding .. 9

6 CLINICAL AND LABORATORY EVALUATIONS ... 10
 6.1 Case Report Form Collection Schedule ... 10
 6.2 Timing of Evaluations ... 11
 6.2.1 Pre-Intervention Evaluations ... 11
 6.2.2 On-Study Evaluations ... 11
 6.2.3 Intervention Discontinuation Evaluations and Premature Withdrawals .. 11
 6.2.4 Titration of Infusions ... 11
 6.2.5 Post-Intervention Evaluations .. 11
 6.2.6 Final Evaluations and Unscheduled Visits .. 12

7 CONCOMITANT TREATMENTS .. 12

8 CRITERIA FOR INTERVENTION DISCONTINUATION ... 12
 8.1 Management of Intracranial Hemorrhage ... 12

9 ADVERSE EVENT ASCERTAINMENT AND REPORTING ... 13
 9.1 Definition of Safety Outcomes ... 13
 9.2 Reporting of Adverse Events ... 13
 9.2.1 Definition of Relatedness .. 13

10 STATISTICAL CONSIDERATIONS ... 13
 10.1 Sample Size and Accrual ... 13
 10.2 Data Analysis .. 14
 10.2.1 Primary Efficacy Analysis .. 14
 10.2.2 Interim Analyses ... 14
 10.2.3 Secondary and Exploratory Analyses .. 15
 10.2.4 Subgroup Analysis: Gender, Race, Ethnicity ... 15

11 STUDY MONITORING ... 15
 11.1 Data Monitoring ... 15
STUDY SYNOPTIC

Study Title
Multi-arm Optimization of Stroke Thrombolysis (MOST) Stroke Trial

Objectives
The primary efficacy objective of the MOST trial is to determine if argatroban (100µg/kg bolus followed by 3µg/kg per minute for 12 hours) or eptifibatide (135µg/kg bolus followed by 0.75µg/kg/min infusion for two hours) results in improved 90-day modified Rankin scores (mRS) as compared with placebo in acute ischemic stroke (AIS) patients treated with 0.9mg/kg IV rt-PA within three hours of symptom onset. Patients may also receive endovascular thrombectomy (ET) per usual care. Time of onset is defined as the last time the patient was last known to be well.

The primary safety objective of the MOST trial is to determine the safety of argatroban and eptifibatide in combination with IV rt-PA with or without ET per usual care, where safety is measured by symptomatic intracranial hemorrhage (sICH) within 36 hours from randomization.

Design and Outcomes
This is a three-arm, adaptive, Phase-3, blinded, randomized controlled clinical trial at approximately 110 sites in the United States. The first 150 subjects will be randomized 1:1:1. From 150-500 patients, response adaptive randomization (RAR) will favor the treatment arm showing the greatest benefit based on accrued data. After 500 patients, one or both intervention arms may be carried forward for fixed randomization versus IV rt-PA. A maximum of 1200 patients will be enrolled.

The primary efficacy outcome for MOST will be the 90-day mRS translated into utilities, which measure cost-effectiveness and benefits of a given intervention from the patient’s perspective. The primary safety outcome is sICH. Secondary outcomes include a comparison between treatment groups of: the proportion of participants with NIHSS ≤2 at 24 hours; change from baseline to 24-hour NIHSS; proportion with 90-day mRS 0 or 1 and 0-2; 90-day ordinal analysis of the mRS; 90-day EQ-5D; the proportion of participants who have thrombectomy; the proportion of participants with parenchymal hemorrhage types 1 (PH-1) and 2 (PH-2); any ICH on brain imaging within 36 hours of randomization; major hemorrhage (defined as requiring >2 units packed red blood cells) other than intracranial hemorrhage within 7 days; 90-day all-cause mortality; evaluation of treatment effect in ET and non-ET subjects; and, evaluation of race/ethnicity and gender differences in treatment effect.

Interventions and Duration
After rt-PA is started in eligible ischemic stroke patients, the patient or legally authorized representative (LAR) will be approached for participation in the study and consent obtained in eligible patients. Placebo, argatroban or eptifibatide will be started as soon as possible after consent is obtained but within 60 minutes of initiation of rt-PA. A repeat NIH stroke scale will be performed at 24 (+/- 12) hours after initiation of rt-PA. The primary safety outcome will be measured by any evidence of sICH within 36 hours from randomization as determined by a medical safety monitor and an independent neuroradiologist. Functional outcome at 90 days, the primary efficacy outcome, will be assessed by centralized video adjudication of interviews of the patient and/or LAR.

Sample size and Power
With a maximum N=1200, the design provides at least 80% power to detect the specified treatment effect (0.4 utilities) when only one active arm is effective. If both treatment arms are equally effective, power is 89%.
1 STUDY OBJECTIVES

1.1 Primary Objectives

The primary efficacy objective of the MOST trial is to determine if argatroban (100µg/kg bolus followed by 3µg/kg per minute for 12 hours) or eptifibatide (135µg/kg bolus followed by 0.75µg/kg/min infusion for two hours) results in improved 90-day modified Rankin scores (mRS) as compared with placebo in acute ischemic stroke (AIS) patients treated with 0.9mg/kg IV rt-PA within three hours of symptom onset. Patients may also receive endovascular thrombectomy (ET) per usual care.

The primary safety objective of the MOST trial is to determine the safety of argatroban and eptifibatide in combination with IV rt-PA with or without ET per usual care, where safety is measured by symptomatic intracranial hemorrhage (sICH) within 36 hours from randomization.

1.2 Secondary Objective

Secondary objectives include a comparison between treatment groups of: the proportion of participants with NIHSS ≤2 at 24 hours; change from baseline to 24-hour NIHSS; proportion with 90-day mRS 0 or 1 and 0-2; 90-day ordinal analysis of the mRS; 90-day EuroQol (EQ-5D), a self-administered questionnaire that is widely used to obtain utility values to derive quality-adjusted life years (QALY) for a given intervention; the proportion of participants who have thrombectomy; the proportion of participants with parenchymal hemorrhage types 1 (PH-1) and 2 (PH-2); any ICH on brain imaging within 36 hours of randomization; major hemorrhage (defined as requiring >2 units packed red blood cells) other than intracranial hemorrhage within 7 days; 90-day all-cause mortality; evaluation of treatment effect in ET and non-ET subjects; and, evaluation of race/ethnicity and gender differences in treatment effect.

2 BACKGROUND

2.1 Rationale

Intravenous (IV) recombinant tissue plasminogen activator (rt-PA) is the only proven effective medication for the treatment of acute ischemic stroke (AIS). The aim of rt-PA is recanalization and this occurs in ~50% of occluded arteries one hour after treatment. Arterial reocclusion occurs in 14-34% of rt-PA treated patients within two hours and is associated with worse outcome. Overall, 50% of rt-PA treated AIS patients are disabled at three months, likely owing to poor recanalization, reocclusion, or permanent neurological injury occurring before recanalization.1-7

Addition of endovascular thrombectomy (ET) to rt-PA is a recent major advance for AIS patients with large vessel occlusions (LVO), further supporting the impact of recanalization on outcome.8-12 However, only 46% of ET treated patients in published trials achieved functional independence (mRS 0-2) at 90 days13,14; 31% did not achieve good recanalization13,14; 25% had persistent occlusion at 24 hours8; and, only 7% of United States (US) hospitals perform ET.15 Thus, there is an unmet clinical need for adjunctive IV medications that could be administered at all hospitals (small and large) that treat patients with IV rt-PA to augment rt-PA thrombolysis and reperfusion.

Thrombus formation and propagation are complex processes initiated by exposed collagen and/or tissue factor at the site of vascular injury. Recruitment and activation of platelets, platelet aggregation and cross-linking with fibrin(ogen) mediated by the glycoprotein (GP) 2b/3a receptor ensue, generating thrombin and fibrin. Thrombin further propagates platelet activation and aggregation in a positive feedback loop.16 While the fibrin component of a thrombus may be sensitive to lysis by rt-PA, the aggregated platelets resist dissociation and enhance thrombin generation.17 rt-PA also stimulates platelet aggregation and thrombin generation, which may potentiate thrombosis and contribute to arterial reocclusion and neurological deterioration.1-3,18 Two approaches that may augment rt-PA thrombolysis and prevent arterial reocclusion are direct thrombin inhibition with argatroban and inhibition of the GP2b/3a receptor with eptifibatide.

Direct Thrombin Inhibition with Argatroban Augments Thrombolysis

Argatroban is a derivative of arginine that competitively binds to the active site of thrombin thereby preventing fibrin deposition.19 With a half-life of 30 minutes, argatroban has an immediate anticoagulant effect after IV
administration which is rapidly reversed with discontinuation of the drug. In murine models of middle cerebral artery (MCA) occlusion, argatroban reduced the formation of microthrombi, reduced lesion volume, and, when combined with rt-PA, reduced fibrin deposition and extended the time-window for rt-PA. A randomized controlled trial of single agent IV argatroban within 48 hours of stroke symptom onset at 60mg/day for two days and 10mg twice a day for five days resulted in improved symptoms and daily activities in the argatroban group. A randomized placebo controlled safety study in 171 AIS patients found that high dose (100µg/kg bolus followed by 3µg/kg/minute, n=59) and low dose (100µg/kg bolus followed by 1µg/kg/minute, n=58) argatroban were safe when started within 12 hours of symptom onset and did not increase sICH rates (high- dose argatroban 5.1%; low-dose argatroban 3.4%; placebo 0%). Based on these data, we conducted the Argatroban-t-PA Stroke Study (ARTSS), ARTSS-2 and ARTSS-IA trials which found a favorable direction of effect with no safety concerns of argatroban plus rt-PA for AIS.

Inhibition of the GP 2b/3a Receptor with Eptifibatide Augments Thrombolysis
The final step of platelet aggregation is mediated via the GP2b/3a receptor. Murine MCA occlusion model studies have investigated several GP2b/3a inhibitors combined with rt-PA and found that addition of GP2b/3a inhibitors to rt-PA prevented microvascular platelet aggregation, increased recanalization rates compared to rt-PA alone (50% vs. 20%) and reduced infarct volume by 25%.

2.2 Supporting Information and Prior Clinical Experience
Overall, six completed Phase 2 trials suggest the combination therapies are safe at the doses proposed. The studies were underpowered to demonstrate efficacy, but our analyses suggest a direction of effect in favor of the combination therapies. We propose to study this definitively in the MOST trial.

Table 1 – Design and Sample Size of Six Completed Phase 2 Trials

<table>
<thead>
<tr>
<th></th>
<th>ARTSS</th>
<th>ARTSS-2</th>
<th>ARTSS-IA</th>
<th>CLEAR</th>
<th>CLEAR-ER</th>
<th>CLEAR-FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention</td>
<td>0.9mg/kg rt-PA + low do argatroban</td>
<td>0.9mg/kg rt-PA + low or high dose argatroban</td>
<td>0.9mg/kg rt-PA + high dose argatroban</td>
<td>0.3mg/kg and 0.45mg/kg rt-PA + eptifibatide</td>
<td>0.6mg/kg rt-PA + eptifibatide</td>
<td>0.9mg/kg rt-PA + eptifibatide</td>
</tr>
<tr>
<td>Study Size</td>
<td>n=65, single arm</td>
<td>n=90, 3-arms</td>
<td>n=10, single arm</td>
<td>n=94, 69 combination, 25 rt-PA</td>
<td>n=126, 101 combination, 25 rt-PA</td>
<td>n=27, single arm</td>
</tr>
<tr>
<td>Randomized</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

The ARTSS Trial – Low Dose Argatroban + Standard rt-PA is Safe and Promising
This single arm study of 65 patients combined standard dose rt-PA with 100µg/kg bolus of argatroban followed by a 48-hour infusion targeting a partial thromboplastin time (PTT) of 1.75 x baseline. The mean ± SD age for ARTSS patients was 63 ± 14 years and the median (range) NIH stroke scale score (NIHSS) was 13 (3-25). The endpoints were sICH and recanalization rates. sICH rate was 4.6% and 78% achieved partial or complete recanalization at 24 hours. Ultra-early recanalization at 2-hours post rt-PA was measured using validated and centrally adjudicated transcranial Doppler (TCD) ultrasound waveforms. Although this was a single-arm study, eligibility criteria and outcome variables were a priori chosen to closely match the CLOTBUST study that included a control arm (rt-PA alone) to allow comparison of 2-hour recanalization. Complete recanalization at 2 hours occurred in 30% of argatroban + rt-PA patients compared to 13% rt-PA alone.

The ARTSS-2 Trial – Higher Dose Argatroban + Standard IV rt-PA is Safe and Promising
This Phase 2 randomized controlled clinical trial was designed to estimate overall treatment benefit among stroke patients treated with rt-PA who are randomized to either low dose argatroban (100µg/kg bolus, followed by 1µg/kg/minute IV infusion for 48 hours), high dose argatroban (100µg/kg bolus, followed by 3µg/kg/minute IV infusion for 48 hours) or rt-PA alone. ARTSS-2 enrolled 90 patients at seven US and seven United Kingdom (UK) centers. Characteristics of enrolled patients are shown in Table 2. More argatroban patients reached
mRS of 0-1 at 90 days as shown in Figure 1a and a trend in favor of improved outcomes in the high dose argatroban arm is shown in Figure 1b along with similar sICH. Relative risks were adjusted for clinical site, terminal ICA occlusion, and Hemorrhage After Thrombolysis (HAT) score which includes NIHSS, glucose and CT hypodensity. The equivalent difference in the utility score in favor of the high dose argatroban combination arm would be 1.0 (-0.9, 2.8).

<table>
<thead>
<tr>
<th>Table 2 - ARTSS-2 Patient Characteristics</th>
<th>IV rt-PA Alone N=29</th>
<th>Low Dose Argatroban N=30</th>
<th>High Dose Argatroban N=31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in years, mean ± SD</td>
<td>68.9 ± 15.4</td>
<td>70.9 ± 15.1</td>
<td>67.1 ± 13.4</td>
</tr>
<tr>
<td>Stroke Onset to IV rt-PA bolus, minutes, mean±SD</td>
<td>110.8 ± 44.7</td>
<td>132.3 ± 51.8</td>
<td>115.6 ± 46.2</td>
</tr>
<tr>
<td>Baseline NIHSS, (median, range)</td>
<td>15 (4-26)</td>
<td>16 (2-29)</td>
<td>13 (3-33)</td>
</tr>
<tr>
<td>ASPECTS score, (median, IQR)</td>
<td>10 (8, 10)</td>
<td>8 (6, 10)</td>
<td>9 (8, 10)</td>
</tr>
</tbody>
</table>

The ARTSS-IA Trial – rt-PA + Argatroban + ET is Safe
This proof-of-concept, single-arm, feasibility and safety study (ARTSS-IA; NCT02448069) assessed the MOST high dose argatroban regimen in AIS patients who receive IV rt-PA and ET. Ten patients were enrolled. Median age was 68 years (range 52-92) and median NIHSS was 19.5. All 10 patients received 12 hours of argatroban infusion and none suffered sICH or procedural complications. Study procedures did not prolong ET time metrics (i.e., imaging to groin-puncture) compared with non-ARTSS-IA ET cases.

The CLEAR Trial – Half Dose rt-PA + Eptifibatide is Safe
This randomized dose escalation study showed that eptifibatide (75µg/kg bolus followed by 0.75µg/kg/min infusion for 2 hours) could be safely combined with 0.3mg/kg or 0.45mg/kg of rt-PA administered within three hours of symptom onset in AIS. sICH rate was 1% with no signal of efficacy as compared to IV rt-PA alone.

The CLEAR-ER Trial – 0.6mg/kg rt-PA + Eptifibatide is Safe and Promising
CLEAR-ER randomized 126 AIS patients treated with rt-PA within three hours to 0.6mg/kg rt-PA plus eptifibatide (135µg/kg bolus and a 2-hour infusion at 0.75µg/kg/min) (n=101) vs standard rt-PA (0.9mg/kg) (n=25). Combination arm patients were non-significantly younger (72 vs 76 year, P=0.63), had lower NIHSS (12 vs 17, P=0.11) and had shorter times to IV rt-PA (113 vs 129 minutes, P=0.69). The age, NIHSS and time-to-IV rt-PA adjusted odds ratio was 1.38 (95% confidence interval (CI), 0.51-3.76; P=0.52) in favor of rt-PA +eptifibatide. The sICH rate was 2%. Due to imbalances in the treatment and control arms of ER, we also matched 85 CLEAR-ER to 169 contemporaneous III/ALIAS rt-PA only subjects using a propensity score matching. The primary outcome was 90-day severity-adjusted mRS dichotomization based on baseline NIHSS. Median age in and control subjects was 68 years; median NIHSS in the subjects was 11 and in control subjects 12. At 90 days, 45% of subjects had favorable outcomes vs 36% in controls (unadjusted RR 1.24, 95% CI 0.91-1.69, p=0.18) (Figure 2). Secondary outcomes were 52% vs 34% excellent outcomes (mRS 0-1) (RR 1.51, 1.13-2.02, p=0.007); 60% vs 53% favorable outcome (mRS 0-2) (RR 1.13, 0.90-1.41, p=0.31); and ordinal Cochran-Mantel-Haenszel p=0.10. The equivalent difference in the utility score in favor of the eptifibatide combination would be 0.43 (-0.37, 1.24).
The CLEAR-FDR Trial – Standard rt-PA + Eptifibatide is Safe and Promising
This was a single arm safety study of standard dose (0.9mg/kg) rt-PA plus eptifibatide. The primary goal was to ensure with high probability (defined as 80%) that the rate of sICH does not exceed 8%, the expected sICH rate based on patients from the NINDS trial who meet inclusion/exclusion criteria for the CLEAR trials. The stopping rule for the CLEAR-FDR trial was 3 sICH cases within the first 19 patients enrolled or 4 out of 29 patients enrolled. With a sample size of 30, a two-sided 95% confidence interval for a rate of 8% would be 0% to 18%. Twenty seven AIS patients were enrolled. Median age was 73 years (range 34-85) and median NIHSS was 12 (range 6-26). One sICH (3.7%, 95%CI 0.7%-18%) occurred. We found comparable safety of full dose rt-PA plus eptifibatide with historical rates of sICH with rt-PA alone.

We also performed propensity score matching of 18 CLEAR-FDR subjects and 52 rt-PA only subjects from both IMS III and ALIAS. All subjects had a baseline mRS of 0 or 1. At 90 days, CLEAR-FDR subjects had a nonsignificant greater proportion of patients with a favorable primary outcome (61% versus 38%; RR 1.59; 95% CI 0.96-2.63; P=0.10). Secondary outcomes also favored CLEAR FDR subjects: mRS 0-1 67% versus 38% (RR 1.73, 95% CI 1.08-2.79; P=0.04); mRS 0-2 67% versus 58% (RR 1.16, 95% CI 0.77-1.73; P=0.50); and ordinal Cochran-Mantel-Haenszel, P=0.13. The equivalent difference in the utility score in favor of the eptifibatide combination would be 1.14 (-0.55, 2.83).

3 STUDY DESIGN AND MANAGEMENT

3.1 Study Design Overview

The MOST trial is a multi-arm, adaptive, blinded, randomized controlled Phase 3 clinical trial conducted at approximately 110 sites to determine whether argatroban and/or eptifibatide is superior to placebo in improving 90-day modified Rankin scores (mRS) in acute ischemic stroke (AIS) patients treated with IV rt-PA (0.9mg/kg) within three hours of symptom onset. We will also assess the safety of the combination therapies. A schematic of study activities is illustrated below.

Study Arms:
1. argatroban (100µg/kg bolus and a 12-hour infusion at 3µg/kg/min)
2. eptifibatide (135µg/kg bolus and a 2-hour infusion at 0.75µg/kg/min)
3. placebo

We will enroll a maximum of 1200 subjects. The first 150 subjects will be randomized in a 1:1:1 ratio to either argatroban, eptifibatide, or placebo. From the 150th to the 500th subject enrollment, response adaptive randomization (RAR) will favor the active arm showing the greatest benefit based on accrued data. After 500 subjects, one or both intervention arms may be carried forward for fixed randomization versus placebo. When N=500, one (or both) arm(s) may be stopped for futility if there is <20% chance of demonstrating benefit in either intervention (argatroban or eptifibatide) if the trial were to continue. Next, one (or both) arm(s) may be stopped for futility when N=700 or N=900, if there is <5% chance of demonstrating benefit in either intervention if the trial were to continue. One (or both) arm(s) may be stopped early for efficacy after 700 or 900 subjects if an arm has an expected success predictive probability of demonstrating superiority to control of ≥99%.

We will also assess the safety of argatroban and eptifibatide in combination with IV rt-PA and ET. The National Data Management Center (NDMC) will generate periodic DSMB reports throughout the trial. The study’s Independent Medical Safety Monitor (IMSM) will review all ICH cases throughout the trial and determine if a hemorrhage is symptomatic. We expect 30% of enrolled subjects will receive ET. The endovascular safety monitor will review all ET cases for safety particular to ET.
3.2 Study Outcomes

3.2.1 Primary Outcomes

Primary Efficacy Outcome

The primary outcome measure for the MOST trial will be the 90-day mRS scores translated to patient-centered utilities. The utility values assigned to each mRS score are shown below in Table 3 and the comparisons of the utility values to observed treatment effects in pivotal stroke trials are shown in Table 4.

<table>
<thead>
<tr>
<th>mRS Score</th>
<th>Rivero-Arias et al utility scores</th>
<th>Hong & Saver utility scores</th>
<th>MOST Trial utility scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>8.7</td>
<td>9.5</td>
<td>9.1</td>
</tr>
<tr>
<td>2</td>
<td>7.3</td>
<td>7.9</td>
<td>7.6</td>
</tr>
<tr>
<td>3</td>
<td>6.0</td>
<td>6.7</td>
<td>6.5</td>
</tr>
<tr>
<td>4</td>
<td>2.8</td>
<td>3.5</td>
<td>3.3</td>
</tr>
<tr>
<td>5</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4 – Effect Size Using Ordinal or Dichotomized and Utility-Weight Analysis of the Modified Rankin Scale

<table>
<thead>
<tr>
<th>Trial</th>
<th>Odds Ratio (95% CI)</th>
<th>Proportion of mRS</th>
<th>Utility-Weighted mRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NINDS TPA</td>
<td>1.7 (1.1-2.6)</td>
<td>26.6 (38.5)</td>
<td>5.01</td>
</tr>
<tr>
<td>MR CLEAN#</td>
<td>1.67 (1.21-2.30)</td>
<td>6.0 (19.1)</td>
<td>3.62</td>
</tr>
<tr>
<td>IMS 3^</td>
<td>1.08 (0.77-1.52)</td>
<td>8.9 (38.7)</td>
<td>5.05</td>
</tr>
<tr>
<td>IST 3^</td>
<td>1.27 (1.10-1.47)</td>
<td>21.0 (35.0)</td>
<td>4.18</td>
</tr>
<tr>
<td>ECASS 3^</td>
<td>1.28 (1.00-1.65)</td>
<td>45.2 (61.6)</td>
<td>6.74</td>
</tr>
</tbody>
</table>

^ dichotomized analysis; # ordinal analysis

Primary Safety Outcome

The primary safety outcome will be the sICH rate defined as a type 2 parenchymal hemorrhage (PH2) or a remote parenchymal hemorrhage with neurological deterioration (≥4 point worsening in the NIHSS) within 36 hours of randomization.

PH-2 refers to the following classification of ICH after ischemic stroke as proposed by Berger et al.:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemorrhagic Infarct Type 1</td>
<td>Small petechiae along margin of the infarct</td>
</tr>
<tr>
<td>Hemorrhagic Infarct Type 2</td>
<td>More confluent petechiae within the infarcted area but without space-occupying effect</td>
</tr>
<tr>
<td>Parenchymal Hematoma Type 1</td>
<td>Hematoma in < 30% of the infarcted area with some slight space occupying effect</td>
</tr>
<tr>
<td>Parenchymal Hematoma Type 2</td>
<td>Dense hematoma > 30% total of the infarcted area with substantial space occupying effect or any hemorrhagic area outside the infarcted area</td>
</tr>
</tbody>
</table>

3.2.2 Secondary Outcomes

Secondary Efficacy Outcomes

These will include the proportion of participants with NIHSS ≤2 at 24 hours (a strong predictor of long term outcome); change from baseline to 24-hour NIHSS; proportion with 90-day mRS 0 or 1 and 0-2; 90-day ordinal analysis of the mRS; 90-day EQ-5D; the proportion of participants who have thrombectomy.

Secondary Safety Outcomes

These will include the proportion of participants with parenchymal hemorrhage types 1 (PH-1) and 2 (PH-2); any ICH on brain imaging within 36 hours of randomization; major hemorrhage (defined as requiring >2 units packed red blood cells) other than intracranial hemorrhage within 7 days; and, 90-day all-cause mortality.
3.2.3 Clinical Outcome Assessments – Blinded Determination of Day 90 mRS

Given the possibility of introducing bias with unblinding argatroban arm subjects via aPTT measurement, a blinded central assessor will determine the primary outcome in MOST. The clinical evaluation outcomes of interest for the MOST trial include the 24-hour NIHSS, the Day 30 and Day 90 mRS and the Day 90 EQ-5D. All assessments will be conducted by certified study personnel. The Day 30 mRS evaluation will occur in-person or via telephone call with the subject and/or proxy (if the subject is unable). The telephone mRS has been shown to have good agreement with face-to-face mRS (weighted kappa 0.82, 95% CI 0.77-0.88). The Day 90 mRS will be conducted by video recorded face-to-face interviews. The Day 30 and Day 90 mRS score will be assigned by local study personnel. A blinded central assessor will assign Day 90 mRS from video recordings performed by local personnel. The central mRS assignment will be used for the primary outcome assessment. Central mRS assessments will be recorded on videos which will be uploaded to a secure server where they will be checked, stored and distributed for independent scoring by expert raters, with committee discussion as appropriate.

3.3 Imaging Acquisition and Analysis

Imaging protocols: Heterogeneity of varying scanner capabilities and changing scanners at the participating sites is expected in multicenter imaging trials. Hence, absolute standardization is difficult. The imaging obtained will be standard of care and require that the imaging protocols at the enrolling sites are based on the Stroke Imaging Research (STIR) consortium recommendations, which have been designed to accommodate different makes of scanners. This will increase the homogeneity of the imaging studies obtained at the different sites, and the central review will further ensure that the imaging biomarkers used in this study are comparable from site to site.

Imaging analysis: To protect confidentiality and prevent bias, all imaging data will be transmitted via a secure platform to the study neuroradiologist for central interpretation of: (1) Baseline non-contrast CT- Acute ischemia defined by ASPECTS score, (2) Baseline vascular imaging CTA/MRA- LVO (defined as intracranial ICA, MCA-M1 or basilar occlusion) and (3) 12-36 hour follow up noncontrast CT or MRI- safety monitoring for presence of hemorrhage and grading of hemorrhagic transformation.

Data collected include the baseline ASPECT score for all randomized subjects, the presence of LVO (yes or no) at baseline for patients undergoing ET, and presence of ICH, PH-1, and PH-2 on the 12-36 hour CT or MRI for all randomized subjects. These imaging data will be determined by the central imaging readers. Of primary interest is the proportion of PH-2 ICH as this is used to define the primary safety outcome which will be adjusted for by the baseline ASPECTS score. At the end of the trial, the proportion of subjects with any ICH and the proportion who develop PH-1 and PH2 will be reported by treatment group. Other imaging data (e.g., M2 occlusions or collateral scores) will be noted and included in exploratory analyses separate from the aims of the present proposal.

3.4 Manual of Procedures

The Manual of Procedures will be a document containing detailed instructions on the recruitment process, study procedures and data collection. The document should be used by the clinical sites for day to day operations. Revisions to the manual will be made as necessary.

4 SELECTION AND ENROLLMENT OF SUBJECTS

4.1 Inclusion and Exclusion Criteria

Inclusion Criteria
1. Acute ischemic stroke patients
2. Treated with 0.9mg/kg IV rt-PA within 3 hours of stroke onset or time last known well
3. Age ≥ 18
4. NIHSS score ≥ 6 prior to IV rt-PA
5. Able to receive assigned study drug within 60 minutes of initiation of IV rt-PA
Exclusion Criteria:

1. Known allergy or hypersensitivity to argatroban or eptifibatide
2. Previous stroke in the past 90 days
3. Previous intracranial hemorrhage, neoplasm, subarachnoid hemorrhage, or arterial venous malformation
4. Clinical presentation suggested a subarachnoid hemorrhage, even if initial CT scan was normal
5. Surgery or biopsy of parenchymal organ in the past 30 days
6. Trauma with internal injuries or ulcerative wounds in the past 30 days
7. Severe head trauma in the past 90 days
8. Systolic blood pressure >180mmHg post-IV rt-PA
9. Diastolic blood pressure >105mmHg post-IV rt-PA
10. Serious systemic hemorrhage in the past 30 days
11. Known hereditary or acquired hemorrhagic diathesis, coagulation factor deficiency, or oral anticoagulant therapy with INR >1.5
12. Positive urine pregnancy test for women of child bearing potential
13. Glucose <50 or >400 mg/dl
14. Platelets <100,000/mm3
15. Hematocrit <25 %
16. Elevated PTT above laboratory upper limit of normal
17. Creatinine > 4 mg/dl
18. Ongoing renal dialysis, regardless of creatinine
19. Received Low Molecular Weight heparins (such as Dalteparin, Enoxaparin, Tinzaparin) in full dose within the previous 24 hours
20. Abnormal PTT within 48 hours prior to randomization after receiving heparin or a direct thrombin inhibitor (such as bivalirudin, argatroban, dabigatran or lepirudin)
21. Received Factor Xa inhibitors (such as Fondaparinux, apixaban or rivaroxaban) within the past 48 hours
22. Received glycoprotein IIb/IIIa inhibitors within the past 14 days
23. Pre-existing neurological or psychiatric disease which confounded the neurological or functional evaluations e.g., baseline modified Rankin score >3
24. Other serious, advanced, or terminal illness or any other condition that the investigator felt would pose a significant hazard to the patient if rt-PA, eptifibatide or argatroban therapy was initiated
 a. Example: known cirrhosis or clinically significant hepatic disease
25. Current participation in another research drug treatment protocol - Subjects could not start another experimental agent until after 90 days
26. Informed consent from the patient or the legally authorized representative was not or could not be obtained
27. High density lesion consistent with hemorrhage of any degree
28. Large (more than 1/3 of the middle cerebral artery) regions of clear hypodensity on the baseline CT Scan. Sulcal effacement and/or loss of grey-white differentiation alone are not contraindications for treatment

4.2 Study Enrollment Procedures

At the enrolling center, rt-PA patients will be screened by the treating Stroke Team physician based on the inclusion and exclusion criteria for the study. Subjects for the MOST trial will be recruited from all patients with suspected AIS admitted to participating hospitals. Given that time to treatment is critical for optimal outcomes, IV rt-PA and ET will be planned and administered per usual care. Those not meeting eligibility criteria will continue to be treated per usual care and will not be enrolled in the trial. Those who meet inclusion and exclusion criteria will be approached for possible consent and enrollment. This must be done quickly as the patient should be consented and study drug started within 60 minutes of rt-PA initiation without interfering with plans for ET if indicated. Telemedicine procedures may be used for informed consent per approval by the Central Institutional Review Board.
A consent process must be executed for all subjects entered in the trial. Obtunded patients are not automatically excluded from the study. If neither the subject nor the LAR (i.e., the individual legally empowered in the state where the consent is obtained) can provide consent, entry into the study will not proceed.

Once a subject has been deemed eligible and consent has been obtained, they may be randomized. To randomize a subject, the qualified MOST study team member will log in to WebDCU™, then WebDCU™ evaluates the treatment arm distribution and generates a randomization number based on the randomization scheme. The randomization number corresponds to one of the study drug kits in inventory at the clinical site. A web-based central randomization system will be developed by the NDMC and implemented through the WebDCU™ MOST study website.

A screen failure log will be maintained by study site documenting reasons for trial ineligibility.

4.3 Participating Sites

Participating sites for MOST will be comprised of approximately 110 enrolling sites in the United States.

5 STUDY INTERVENTIONS

5.1 Interventions, Administration and Duration

The study intervention will be one time administration of argatroban (100µg/kg bolus followed by 3µg/kg per minute for 12 hours) or eptifibatide (135µg/kg bolus followed by 0.75µg/kg/min infusion for two hours) or placebo. We anticipate subjects will be treated in the emergency department (ED) after presentation with AIS. Argatroban, eptifibatide, or placebo will be administered within an hour of initiation of rt-PA. Participants will be monitored closely in the intensive care unit (ICU) and monitored for neurological deterioration secondary to sICH. In-hospital clinical care, including indications for ET, will be per American Stroke Association (ASA) treatment guidelines.49

5.2 Handling of Study Interventions and Blinding

Study drugs will be constituted at University of California Davis GMP facility and shipped to the NIH StrokeNet Central Pharmacy at the University of Cincinnati in batches. All three formulations will be clear solutions. Reconstitution/dilution of commercially available drugs by University of California Davis will ensure the method of drug administration, including volume and rate of infusion is identical for all three drugs. These factors ensure that drug administration will be blinded.

5.2.1 Blinding

All subjects will initially receive a blinded bolus followed by a blinded 2-hour infusion of either argatroban, eptifibatide, or placebo. At 2 hours, subjects will receive a second blinded infusion of either argatroban or placebo, and this infusion will be continued until 12 hours. An activated partial thromboplastin time (aPTT) will be obtained in all subjects at 2 hours to mimic the protocol for subjects randomized to argatroban (see section 6.2.4). Thus, the study interventions will be fully blinded from randomization to two hours, but unblinding of the investigator for only the argatroban arm may occur with the aPTT being drawn at 2 and 6 hours as the aPTT is used to titrate dosing of argatroban at 2 and 6 hours.

The two primary concerns of lack of blinding are: 1) knowledge of the treatment arm could bias endpoint assessments of safety (sICH) or efficacy (mRS at 90 days); and, 2) knowledge of an active treatment could influence the decision of investigators to proceed with ET in some participants, although we believe this is unlikely. Centralized blinded adjudication of sICH, and centralized blinded 90-day mRS assessments will mitigate the first concern, and complete blinding for the first two hours of study infusion will mitigate the second concern. A schematic of the blinding process for MOST is shown in Figure 4. If the argatroban arm is stopped after N=500, 700, or 900, then vial #3 will no longer be administered to the remaining enrollments and aPTT will not be drawn.
Once a patient is randomized, the study team member will retrieve the study drug kit from site inventory labeled with the randomization number assigned by WebDCUTM. The study kit will contain three glass vials individually labeled. The 100mL vials numbered 1 and 2 will contain either argatroban, eptifibatide, or placebo bolus (#1) and the two hour infusion (#2). The 250mL vials numbered 3 will contain either placebo or argatroban for infusion from 2-12 hours.

The bolus and 2-hour infusion study drugs will be prepared in identical 100mL glass vials. The 2-12-hour infusion will be prepared in identical 250mL glass vials. Because this is a blinded study, clinical site investigators (local pharmacy, clinical team, and study team) will not know whether a participant is assigned to argatroban, eptifibatide, or placebo.

6 CLINICAL AND LABORATORY EVALUATIONS

6.1 Schedule of Events

<table>
<thead>
<tr>
<th>Time</th>
<th>Baseline</th>
<th>2 hour (+/- 30 min) (after start of study drug)</th>
<th>6 hour (+/- 30 min)</th>
<th>24 hours (+/- 12 hrs)</th>
<th>Day 3/Discharge* (+/- 24hrs)</th>
<th>Day 30 (+/- 7 days)</th>
<th>Day 90 (+/- 14 days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusion Exclusion Criteria</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subject Enrollment</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informed Consent/ Randomization</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History & Physical</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIH Stroke Scale</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modified Rankin Score</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consent experience survey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ-5D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT/MRI scan (SOC*)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTA/MRA (if SOC)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBC with platelets</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose, electrolytes, BUN/creatinine, PT</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aPTT</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dosing Titration∞</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adverse events</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X^</td>
</tr>
<tr>
<td>End of Study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

*Standard of care *whichever comes first *serious AEs only ∞as needed based on aPTT titration protocol
6.2 Timing of Evaluations

6.2.1 Pre-Intervention Evaluations

These evaluations occur prior to the subject receiving any study interventions.

Screening
A history, physical examination, and NIH stroke scale will be performed by the Stroke Team physician, and intravenous rt-PA will be started per usual care in eligible patients. rt-PA is to be started as soon as possible in the ED, and delays in initiating therapy are to be avoided. For patients eligible for ET, rapid transport to ET should be initiated and facilitated prior to engaging in discussions regarding the study.

Entry/Baseline
If rt-PA is started within 3 hours from symptom onset, the patient will be evaluated for eligibility for the trial. Informed consent will be obtained from the patient (if able) or LAR. A baseline modified Rankin score will be recorded to indicate the subject’s functional status prior to the qualifying stroke (pre-event). Baseline usual care imaging and lab data points that will be collected include the CT/CTA findings, complete blood count results, glucose and electrolyte panel with BUN/creatinine, coagulation parameters and urine pregnancy tests in women of child-bearing age.

6.2.2 On-Study Evaluations

The NIH stroke scale score will be performed on every subject immediately prior to initiation of intravenous rt-PA therapy and at 24 hours post initiation of study drug. The NIHSS will be done by an NIHSS certified investigator. A non-contrast head CT or magnetic resonance imaging (MRI) of the brain (per usual care) will be performed at baseline and within 36 hours of randomization. An aPTT will be assessed at 2 hours and 6 hours. All adverse events will be reported from randomization through Day 3 or Discharge, whichever comes first. After Day 3/Discharge, only serious AEs and safety outcomes will be reported. Between 24 hours and hospital discharge, a brief survey of the consent experience will be obtained from the subject or surrogate who signed the ICD. At Day 30 and Day 90, the modified Rankin score will be collected. The EQ-5D will be collected at Day 90.

6.2.3 Intervention Discontinuation Evaluations and Premature Withdrawals

Per standard of care after treatment with rt-PA, the infusion should be discontinued and a repeat head CT performed if the participant develops sudden neurological worsening or severe headache during treatment. If ICH is detected on CT, reversal agents including prothrombin complex concentrate (PCC), cryoprecipitate, platelets and fresh frozen plasma should be administered. A neurosurgery consultation should be obtained.

6.2.4 Titration of Infusions

Argatroban requires titration to target aPTT at 2 and 6 hours after initiation. For all treatment arms, clinical personnel will titrate all study drug infusions, including the placebo and eptifibatide arms per protocol.

![Figure 5 – Protocol for aPTT Titration](attachment)

Target aPTT 2.25 × baseline

<table>
<thead>
<tr>
<th>Increase by 0.5 µg/kg/min</th>
<th>Increase by 0.25 µg/kg/min</th>
<th>Increase by 0.125 µg/kg/min</th>
<th>No change</th>
<th>Decrease by 0.125 µg/kg/min</th>
<th>Decrease by 0.25 µg/kg/min</th>
<th>Decrease by 0.5 µg/kg/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 2.03 × baseline</td>
<td>2.04-2.11 × baseline</td>
<td>2.12-2.18 × baseline</td>
<td>2.19-2.31 × baseline</td>
<td>2.32-2.35 × baseline</td>
<td>2.36-2.47 × baseline</td>
<td>≥ 2.48 × baseline</td>
</tr>
</tbody>
</table>

These assume an infusion dose of 3µg/kg/min. As such, if a 100kg subject has an aPTT ≤2.03 x baseline after a 2-hour infusion, the replacement infusion from 2-12 hours will be increased to 3.5µg/kg/min or 10.5mL/hr of 2mg/mL argatroban or placebo (if placebo or eptifibatide arms as above).

6.2.5 Post-Intervention Evaluations
Per standard of care, the subject will be admitted to the ICU and neurological assessments performed hourly for 24 hours. Clinical care and use of ET will be per American Stroke Association (ASA) guidelines.⁴⁹,⁵⁰
6.2.6 Final Evaluations and Unscheduled Visits

In-hospital assessments will occur daily for 3 days or until Discharge, whichever comes first. The Day-30 visit will be completed over the phone or in person. The final assessment will occur at Day 90 and will be conducted in person and video recorded.

7 CONCOMITANT TREATMENTS

Concomitant use of antiplatelet or anticoagulant medications is prohibited in the first 24 hours after initiation of rt-PA unless a safety scan shows it is safe to administer in an effort to avoid common deviations. Thereafter, antiplatelet agents may be initiated per usual care. Anticoagulant medications are discouraged per ASA guidelines, except for venothromboembolism prophylaxis. In the event that systemic anticoagulation is thought clinically necessary, the route, frequency, dose and duration must be documented. Endovascular thrombectomy may occur per usual care. For ET patients, heparin may be used for line flushes only but no systemic antithrombotic agents are permitted.

8 CRITERIA FOR INTERVENTION DISCONTINUATION

The most likely reasons for discontinuing the intervention after enrollment are acute neurological deterioration possibly secondary to sICH during the infusion, and refractory hypertension (blood pressure cannot be maintained below 180/105mmHg despite a continuous infusion medication). In both cases, the rt-PA and/or study drug are to be stopped immediately. The subject should continue to be followed and data collected per the study protocol.

8.1 Management of Intracranial Hemorrhage

Reversal of Intracranial Hemorrhage

Reversal of intracranial hemorrhage is key for all treatment arms since IV rt-PA will be administered to all enrolled subjects. However, the overall goal of stopping bleeding remains the same and thus the reversal approach is similar for all three treatment arms (see below).

Management of intracranial hemorrhage

Intracranial hemorrhage should be suspected if there is any acute neurological deterioration (new headache, acute hypertension, seizure, or nausea and vomiting) or acute increase in BP.

If ICH is suspected:

- Discontinue rt-PA and/or study drug infusion until ICH is ruled out
- Immediately perform CT scan
- Draw blood for INR, PT, aPTT, platelet count, fibrinogen and type and screen
- Prepare for administration of 6-8 units of cryoprecipitate
- Prepare for administration of 6-8 units of platelets
- Prepare for administration of 5-10ml/kg of fresh frozen plasma (FFP)
- Prepare for administration of prothrombin complex concentrates (PCC)

If ICH present:

- Consider administering 6-8 units cryoprecipitate, 6-8 units platelets and 5-10ml/kg of FFP OR administering PCCs, 6-8 units cryoprecipitate and 6-8 units of platelets
- Consider emergent neurosurgical consultation
- Discuss with participant’s family or next-of-kin
9 ADVERSE EVENT ASCERTAINMENT AND REPORTING

9.1 Definition of Safety Outcomes

The following are safety outcomes of the study:

- sICH within 36 hours from randomization
- Proportion of participants with parenchymal hemorrhage types 1 (PH-1) and 2 (PH-2) within 36 hours of randomization
- Any ICH on brain imaging within 36 hours of randomization
- Major hemorrhage (requiring >2 units of packed red cells) other than intracranial hemorrhage within seven days of randomization
- All-cause mortality within 90 days of randomization

Symptomatic Intracerebral Hemorrhage: A type 2 parenchymal hemorrhage (PH-2) or remote parenchymal hemorrhage associated with a four or more point increase in the NIHSS score from baseline to subsequent CT scan at the time of worsening, per SITS-MOST definition.41 Hemorrhage classification will be based on central neuroradiologist review and the final judgment regarding whether the hemorrhage is symptomatic will be made by the independent safety monitor.

9.2 Reporting of Adverse Events

All study drug related adverse events (AEs), all Serious AEs, and all safety outcomes will be reported from randomization through Day 3 or Discharge, whichever comes first. After Day 3/Discharge, all serious AEs and all safety outcomes will be reported.

The site will report non-serious events in WebDCU within 5 days of the site’s awareness of the event. Serious events must be reported within 24 hours. If the event is determined to be unexpected (not previously observed) and related to trial participation (study drug) and meets the FDA criteria as a serious event, an expedited safety report will be submitted to the FDA in accordance with CFR 312.32.

9.2.1 Definition of Relatedness

Details will be provided in the MOP. For each Adverse Event, the relationship to the study treatment must be recorded as one of the choices on the following scale:

- Not Related
- Unlikely
- Reasonable possibility
- Definitely

10 STATISTICAL CONSIDERATIONS

This section is an overview of the statistical considerations. Complete details can be found in the Statistical Analysis Plan (SAP). The general overview of the design is provided in section 3.1.

10.1 Sample Size and Accrual

The minimum clinically significant difference was defined as 0.4 points on the utility scale primary outcome, which corresponds to ~45% of the effect for IV rt-PA over placebo in the NINDS study (Table 4).52 With a
maximum N=1200, this design provides at least 80% power to detect a treatment effect when the overall true utility benefit is 0.4 for one active arm in non-ET subjects (Table 7). If both treatment arms are equally effective at 0.4 utility above the control arm, power is 89%. The properties of the study design have been investigated through a series of simulations that assumed 30% of patients receive ET, and the treatment effect for ET patients is 50% of the effect in non-ET patients, corresponding to 25% of the treatment effect of rt-PA over placebo. The impact of ET on treatment effect is unknown but we assumed the worst scenario, i.e., marked attenuation of effect. Table 7 shows power when only one treatment arm is effective. Power increases if <30% of patients receive ET.

<table>
<thead>
<tr>
<th>Table 7 – Power for Varying Treatment Effects if only One Arm is Truly Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utility Values Above rt-PA Alone</td>
</tr>
<tr>
<td>Scenario 1</td>
</tr>
<tr>
<td>Assumed True Effect Overall (70% non-ET and 30% ET subjects)</td>
</tr>
<tr>
<td>Assumed True Effect for non-ET subjects</td>
</tr>
<tr>
<td>Assumed True Effect for ET subjects (50% of non-ET effect)</td>
</tr>
<tr>
<td>Pr(Effective arm wins)</td>
</tr>
<tr>
<td>Pr(Other arm wins)</td>
</tr>
</tbody>
</table>

Numbers in gray are the utilities (difference in the expected treatment minus control). Numbers in white are the power under 3 different scenarios (determined by simulation).

10.2 Data Analysis

10.2.1 Primary Efficacy Analysis

The primary analysis will be conducted on the intent-to-treat (ITT) analysis population, defined as all subjects randomized regardless of the treatment actually received. The primary analysis will be a two-sample comparison of each active arm compared to placebo mRS utility scores adjusting for severity (baseline NIHSS). If both active arms reach the end of the trial, they will each be compared to control independently.

The final analysis is Bayesian and includes a flexible normal dynamic linear model (NDLM) to account for different expected outcomes as a function of initial NIHSS. This is a flexible spline-like model that will capture that the average weighted mRS score in the control group as a (possibly non-linear) function of initial NIHSS. Meanwhile for a given treatment \(d \), \(\theta_d \), is the difference in the expected utility for the active treatment minus control. For each active arm, the hypothesis test is

\[
H_0: \theta_d \leq 0 \\
H_A: \theta_d > 0
\]

The treatment effect \(\theta_d \) is given a vague prior, \(\theta \sim N(0,2.5^2) \). Particularly, the prior probability that a drug is beneficial is the same as the prior probability that it is harmful. If there is a high posterior probability that the treatment effect \(\theta_d \) is positive, the treatment is declared efficacious. The posterior probability is conditional on the final results for all enrolled subjects. If two active arms remained in the trial all the way to the end, this posterior probability is computed for each, and potentially both arms can be declared to be successful.

The primary output of the final analysis is the posterior probability that \(\theta_d > 0 \), for any \(d \)'s that remain in the trial. If this probability is at least 0.985, the trial is considered a success. The threshold for defining significance is chosen so that the Type I error is no larger than 0.025. Criteria for success (critical value for posterior probability of a positive benefit) was inflated from 0.975 to 0.985 to account for the two study drugs and the repeated interim looks (e.g. the trial can be stopped when data look favorable enough that success is likely).

10.2.2 Interim Analyses

The interim evaluations of the primary efficacy outcome data are described in the Statistical Analysis Plan. A brief description is provided under section 3.1.

The primary safety outcome (sICH) proportion for each treatment group (overall and by ET/non-ET subgroups)
will be compared to the expected rate of 3%. The probability that the safety outcomes in an intervention arm exceeds the expected rate will be provided in each DSMB report. Stopping rules are non-binding and are to be used as a guideline by the DSMB and safety monitor in conjunction with other relevant data and careful judgement.

10.2.3 Secondary and Exploratory Analyses
The primary outcome of mRS utility values will be reanalyzed in a multiple linear regression adjusting for baseline NIHSS, age, time to IV rt-PA, location of LVO and time from onset to groin puncture in subjects undergoing ET. All secondary analyses will be tested at a significance level of two-sided $\alpha=0.05$. For binary outcomes each active treatment arm will be compared to control in a chi-squared test or fisher’s exact test. For ordinal outcomes each active treatment arm will be compared to control in a Wilcoxon Rank-Sum test and ordinal logistic regression. For continuous outcomes, each active treatment arm will be compared to control in a two-sample t-test. Kaplan Meier curves and log rank tests will be used to compare time to 90-day mortality by treatment group.

Exploratory analyses of the secondary outcomes will use either logistic regression (for binary outcomes), ordinal logistic regression (for categorical outcomes) or multiple linear regression (for continuous outcomes) to compare treatment groups after adjusting for age, baseline NIHSS, time to IV rt-PA, location of LVO and time to groin puncture in ET subjects.

10.2.4 Subgroup Analysis: Gender, Race, Ethnicity
Although we do not anticipate differential treatment effects based on gender, race, or ethnicity, our analyses will explore clinically important differences due to race/ethnicity. The mRS utility values will be reanalyzed in a multiple linear regression adjusting for baseline NIHSS including indicator variables of sex, racial group, and ethnic group and interaction terms with treatment group.

11 STUDY MONITORING

11.1 Data Monitoring
Monitoring for this study will be performed by the NDMC centrally, on site, and remotely. Per the study’s monitoring plan, monitoring will include a combination of on-site monitoring (to verify data entered into the WebDCU™ database against source documents and query inaccuracies between the source documents and WebDCU™ database), remote monitoring (source document verification, including verification of written consent, may be performed remotely by reviewing source documents that have been uploaded into WebDCU™ or via remote access to electronic medical records), and central monitoring (using web-based data validation rules, data manager review of entered data, statistical analysis, and on-going review of site metrics).

In an effort to review informed consent forms in a timely manner, enrolling sites will upload a pdf of the signed informed consent form, into the password protected clinical trial management system, WebDCUTM. The PDF file will be linked to the subject ID but will be stored on a secure server separate from the study’s CRF data. The secure server on which these files are stored is not backed up to prevent copies of files containing Individually identifiable health information from being copied and stored on non-NDMC back up servers. The files on these servers can only be accessed by designated study personnel upon entry of a second password. NDMC staff will remotely monitor the informed consent forms and issues identified will be relayed to the clinical site for corrective and preventative action. After remote monitoring is complete, the PDF file containing the informed consent form will be permanently deleted from the secure server. If a subject must be re-consented, the process will repeat itself.

Further details of clinical site monitoring are documented in the study’s Monitoring Plan. The Monitoring Plan describes in detail who will conduct the monitoring, at what frequency monitoring will be done, at what level of detail monitoring will be performed, and the distribution of monitoring reports.

11.2 Data Management
Data management will be handled by the StrokeNet NDMC which is housed in the Data Coordination Unit (DCU) in the Department of Public Health Sciences at the Medical University of South Carolina (MUSC) which is described below. All activities will be conducted in coordination with the study PIs, the StrokeNet National Coordinating Center, and the clinical sites (StrokeNet and non-StrokeNet). In addition to the study database, the NDMC will provide the clinical site staff access (via password) to a standard set of web-enabled tools, including subject visit calendar, subject accrual status, case report form completion status, and outstanding data queries pertaining to their respective clinical sites.

11.3 Quality Assurance and Quality Control

Data quality assurance processes at the NDMC include:

- logic and rule checks built into the study database;
- real-time, central monitoring by the data managers and statistical programmers at the NDMC; and
- remote and on-site risk-based source verification monitoring by site monitors and data managers at the NDMC.

Quality control (QC) procedures will be implemented beginning with the data entry system, and data QC checks that will be run on the database will be generated. Any missing data or data anomalies will be communicated to the site(s) for clarification/resolution.

Following written procedures as detailed in the monitoring plan, the monitors will verify that the clinical trial is conducted and data are generated, documented (recorded), and reported in compliance with the protocol, GCP, and the applicable regulatory requirements (e.g., Good Laboratory Practices (GLP), Good Manufacturing Practices (GMP)).

The investigational site will provide direct access to all trial-related sites, source data/documents, and reports for the purpose of monitoring and auditing by the sponsor, and inspection by local and regulatory authorities.

12 HUMAN SUBJECTS

12.1 Institutional Review Board (IRB) and Informed Consent

The University of Cincinnati Institutional Review Board will serve as the National Central Institutional Review Board for all participating sites. The Central Institutional Review Board (CIRB) for multicenter protocols is the single IRB of record. It has regulatory responsibility for assuring the protection of the rights and welfare of research participants in accordance with Standard Operating Procedure ADM 12; Central Institutional Review Board Reporting. The National Institute of Neurological Disorders and Stroke (NINDS) selected the University of Cincinnati Institutional Review Board (IRB) to serve as the CIRB for the NIH StrokeNet (StrokeNet).

12.2 Recruitment of Minorities and Women

The individual age, race, and gender of each participant will be transferred to the NINDS at fixed intervals per the NINDS “Standard Operating Procedure of Email Recruitment Enrollment”. The proposed study will take place in communities where there are diverse populations.

Inclusion of Women

All eligible patients of both genders will be approached to participate in the MOST trial. Only pregnant females are systematically excluded by this protocol because of potential risks to the unborn fetus. While there have been historical disparities in the proportion of women enrolled in stroke trials, our Phase 2 trials suggest we should adequately enroll equal numbers of both genders into MOST:
Further, upper age limits in other stroke clinical trials may contribute to a bias towards enrolling more men than women since women tend to be older than men at the time of a first stroke. Thus, the absence of an upper age limit in MOST will allow us to avoid this bias by enrolling all eligible patients aged 18 or older. Overall, we expect to enroll approximately equal proportions of men and women. Further, while we do not anticipate differential treatment effects based on gender, our analyses will explore clinically important differences due to gender.

Inclusion of Minorities

All eligible patients of all races and ethnic groups will be approached to participate in MOST. In our analysis of discharged ischemic stroke patients in the Medicare Provider and Analysis Review (MEDPAR) administrative dataset, StrokeNet hospitals tended to have a lower proportion of white patients compared with non-StrokeNet hospitals (76.5% versus 82.8%) (Adeoye International Stroke Conference 2015). Thus, the stroke patients that will be available within StrokeNet for MOST are up to 23.5% non-white/minority. Particularly, StrokeNet centers such as University of Texas, Houston (city population is 24% Black or African American and 44% Hispanic or Latino), Emory University (city population is 54% Black or African American), University of Miami (city population is 66% Hispanic or Latino), among others should facilitate adequate representation of minorities enrolled. In addition, we have solicited participation from non-StrokeNet US sites with diverse patient populations. Examples include the participation of sites such as the University of Alabama, Birmingham where the population is 73% Black or African American, and University of Tennessee, Memphis where the population is 63% Black or African American. This diverse population will greatly facilitate our goal of enrolling a demographically representative population in MOST.

Despite the availability of representative populations, available literature suggests barriers persist in the participation of minorities in clinical trials. Thus, we will take the following additional steps to ensure representative enrollment of minorities:

1. Emphasize the goal of recruiting a diverse population of stroke patients to participating sites.
2. Make clear to potential participants that patients of all races and ethnicities are being recruited.
3. Make consent form documents available in Spanish.
4. Review blinded aggregate information on demographic characteristics of enrolled patients after each 100 enrollments, and consider refocusing recruitment efforts towards sites with larger proportions of minorities as warranted.

Finally, while we do not anticipate differential treatment effects based on race or ethnicity, our analyses will explore clinically important differences due to race/ethnicity.

12.3 Subject Confidentiality

Participant confidentiality is strictly held in trust by the participating investigators, their staff, and the sponsor(s) and their agents. Therefore, the study protocol, documentation, data, and other information generated will be held in strict confidence. No information about the study or data will be released to any unauthorized third party without prior written approval of the sponsor.
The study monitor, other authorized representatives of the sponsor, and representatives of the NCC, NDMC, cIRB, and/or pharmaceutical company supplying study product may inspect all documents and records required to be maintained by the investigator, including but not limited to, medical records and pharmacy records for the participants in this study. The clinical study site will permit access to such records.

The study participant’s contact information will be securely stored at each clinical site for internal use during the study. At the end of the study, all records will continue to be kept in a secure location for the duration specified by the StrokeNet Standard Operating Procedure (SOP) or longer as dictated by cIRB and local institutional regulations.

Study participant research data, which is for purposes of statistical analysis and scientific reporting, will be transmitted to and stored for the duration of the study and analysis at the NDMC. The study data entry and study management systems used by clinical sites and by the NDMC research staff will be secured and password protected. At the end of the study, all study databases will be de-identified and a Public Use Dataset (PUDS) will be archived with NINDS.

12.4 Study Modification/Discontinuation

The study may be modified or discontinued at any time by the IRB, the NINDS, the sponsor, the OHRP, the FDA, or other government agencies as part of their duties to ensure that research subjects are protected.

13 TRIAL ADMINISTRATIVE STRUCTURE

13.1 Figure 6 - MOST Organizational Chart
13.2 StrokeNet National Coordinating Center and National Data Management Center

The clinical coordination of the MOST Trial operations will be centralized through the following:

NIH StrokeNet National Coordinating Center (NCC)
University of Cincinnati
260 Stetson Street, Suite 2300
Cincinnati, Ohio 45267-0525

A Project Manager at the NCC will be assigned to coordinate the following study oversight: trial communication, required training activities, site assessment and or initiation visits, collection of trial related regulatory documents, recruitment performance tracking and performance analysis.

The data coordination and analysis of the MOST Trial will be centralized through the following:

NIH StrokeNet National Data Management Center (NDMC)
Medical University of South Carolina
135 Cannon Street
Charleston, SC 29425-8350

The study data will be managed (including data queries) by the NDMC using the WebDCU™ system. This user-friendly web-based database system, developed and validated by the NDMC, will be used for regulatory document management, subject randomization, data entry, data validation, project progress monitoring, subject tracking, user customizable report generation and secure data transfer.

13.3 Data Safety and Monitoring Board (DSMB)

MOST will have an independent Data Safety Monitoring Board (DSMB) appointed by the NIH to oversee study safety. We do not expect safety concerns in non-ET patients based on our Phase 2 trials. Given the ARTSS-IA data, we do not expect combination therapy in the setting of ET will prove to be unsafe early in the conduct of the trial. The DSMB may stop an arm at any point for safety concerns. The DSMB will specify the content and frequency of data reports to be generated by the NDMC.

13.4 Independent Medical Safety Monitor

An Independent Medical Safety Monitor will review all SAE reports submitted by the clinical sites throughout the trial and will determine if reported intracranial hemorrhages are symptomatic. He/she also will be responsible for ensuring good clinical practice and to identify safety concerns quickly. The IMSM may suggest protocol modifications to prevent the occurrence of particular AEs, e.g., modifying the protocol to require frequent measurement of laboratory values predictive of the event or to improve expeditious identification of SAEs. To minimize bias, he/she will evaluate SAEs blinded to treatment assignment, unless the DSMB approves partial or complete unblinding. In the event of unexpected SAEs or an unduly high rate of SAEs, the IMSM will promptly contact the Lead PI and the NINDS Program Official who will notify the DSMB Chair.

13.5 Endovascular Safety Monitor

The endovascular safety monitor will review all SAE reports submitted by clinical sites that involve ET cases to assess safety particular to ET. He/she will ensure there are no safety issues particular to ET, including as performed by individual Interventionists or sites. The endovascular safety monitor may suggest protocol modifications to prevent the occurrence of particular AEs, e.g., modifying the protocol to require frequent measurement of laboratory values predictive of the event or to improve expeditious identification of SAEs. To minimize bias, he/she will evaluate SAEs blinded to treatment assignment, unless the DSMB approves partial or complete unblinding. In the event of unexpected SAEs or an unduly high rate of SAEs particular to ET subjects, the endovascular safety monitor will promptly contact the Lead PI and the NINDS Program Official who will notify the DSMB Chair.
13.6 Executive Committee
The Executive Committee will provide overall clinical guidance and leadership for the execution of the MOST Trial. This committee will provide a means of partnership between the investigators, the NINDS, and the sponsors. The Executive committee, composed of experts in emergency medicine, vascular neurology, endovascular therapy and neuroimaging, and biostatistics will provide the overall scientific guidance for the study. The committee will meet monthly by phone (1 hour/month) for the full duration of the study. Responsibilities include oversight of the overall conduct of the study with regard to protocol compliance and modifications/amendments, study progress, and problem-solving. The Lead PI will chair the executive committee.

13.7 National Institute of Neurological Disorders and Stroke (NINDS)
The NINDS will provide funding for all aspects of this trial via the NIH StrokeNet. An identified Program Official will be responsible for oversight of this trial.

14. PUBLICATION OF RESEARCH FINDINGS
Publication of the results of this trial will be governed by the policies and procedures developed by the Executive Committee. Any presentation, abstract, or manuscript will be made available for review by the sponsor and the NINDS prior to submission.
15. MOST INFORMED CONSENT DOCUMENT

CONSENT TO PARTICIPATE IN A RESEARCH STUDY

Study Title: Multi-arm Optimization of Stroke Thrombolysis (MOST Stroke Trial)

Sponsor/Protocol Principal Investigator: Opeolu Adeoye, MD – University of Cincinnati; James Grotta, MD – Memorial Hermann Hospital

Performance Site Principal Investigator: <<Fill in the name of the PI at your site>>

Performance Site: <<Fill in your site name>>

INTRODUCTION

If you are being asked to give permission for someone else to be in this study, you should try to determine whether that person would want to be in the study. “You” throughout this form refers to that person.

You are having a stroke caused by a clot blocking blood flow to the brain. The standard treatments to remove or dissolve blockages causing stroke are helpful within the first few hours of a stroke. You are already being treated with the clot busting medicine tPA (also called alteplase) which is the main treatment. Even with tPA treatment, however, the blood vessels sometimes block up again when t-PA wears off. This can worsen the stroke. This study is designed to find out whether adding one of two blood-thinning medicines helps keep blood vessels open and decrease the impact of the stroke.

You are an appropriate candidate for this study, but you do not have to be in it. It is your choice. Either way you will be treated with the standard stroke care. If you decide to be in the study, you can stop participating at any time.

This form tells you about the study. Please ask questions about anything that you do not understand.

WHAT IS THE STUDY ABOUT?

The MOST study is designed to find out whether adding one of two blood-thinning medicines (argatroban or eptifibatide) to standard treatment helps to decrease the impact of strokes and is safe. Earlier studies have shown that it seems safe and may be helpful to add argatroban or eptifibatide to tPA (standard treatment) to help dissolve clots causing stroke. Both are FDA-approved blood thinners, but they are not approved for treating strokes. Using these medications with tPA is regulated by the US Food and Drug Administration (FDA) but not approved for standard treatment.

HOW IS THIS DIFFERENT FROM WHAT WILL BE DONE NORMALLY?

The standard treatment for stroke is t-PA (a clot-buster) through the vein (also called “IV”). Doctors sometimes also remove clots using a device. Patients are monitored closely, and medications are used to treat blood pressure and cholesterol, to keep the patient stable, and to reduce the risk of future
Most strokes. Rehabilitation is also standard treatment. This study does not change any of this treatment. It is only being done to see if adding argatroban or eptifibatide is helpful and is safe.

The MOST study has three groups. All three groups get standard treatment with tPA. In addition, Group A gets a placebo (salt water) solution through an IV (with no eptifibatide or argatroban); Group B gets argatroban through an IV; Group C gets eptifibatide through an IV.

How is it decided which group you will go in?

A computer will assign you randomly to 1 of the 3 study groups. This means the computer will put you into a group by chance. Neither you nor your doctor will know which group you are in.

What is involved in the research study?

You will get standard stroke treatment no matter which group you are in. This includes tPA with or without clot removal by a device, blood pressure and cholesterol treatments, rehabilitation, and any other treatments your doctor recommends.

In addition, you will get the investigational treatment for 12 hours. If you are assigned to,
- Group A, you will get IV placebo (salt water)
- Group B, you will get IV argatroban
- Group C, you will get IV eptifibatide

We will collect the results of tests that you have as part of your standard treatments for your stroke.

What are the possible benefits of taking part in the study?

You may or may not directly benefit from being in this study. It is possible but unknown whether adding these medicines will help reduce the impact of your stroke. The knowledge gained from this study may help doctors learn more about what treatments are most effective for stroke.

What are the possible risks of taking part in the study?

If you are assigned to standard treatment plus placebo, there are no added treatment-related risks. If you are assigned to standard treatment plus argatroban or eptifibatide, the most common risk or side effect of both medicines is bleeding. Possible major risks include bleeding in the brain, worsened or new stroke, allergic reaction, and death. Other bleeding can also occur such as bleeding in your stool or urine, bleeding from IV sites and easy bruising. Preliminary studies of adding argatroban or eptifibatide to tPA did not show increased risk of bleeding, however there could be increased risk with these treatments. There may be unknown risks.

What will be required of participants?

Your participation will last about 3 months. Regardless of which group you are in, you will have 4 follow-up checks. These may be in-person or over the phone and involve physical exams and asking questions. The 3-month follow-up visit will be in-person and will include a video recording of how you are doing.

What is the alternative to being in the study?
The alternative to being in this study is to be treated with standard treatment (t-PA).

WHAT HAPPENS IF YOU ARE HARMED BY BEING IN THE STUDY?

If you become ill or injured from participating in this research study, emergency medical care will be provided to you. <<Fill in your Site Name >> will decide on a case by case basis whether to reimburse you for your out of pocket health care expenses. You or your third-party payer may have to pay for these costs.

The funding agency, the National Institutes of Health (NIH), and the National Institute for Neurological Disorders and Stroke (NINDS), will not pay for any medical treatment for injuries that occur during his study or are caused by participation.

WHAT ARE YOUR COSTS TO BE IN THIS STUDY?

The study will pay for your study treatments. The study will not pay for the standard medical care that you receive during the study. The costs of your standard medical care will be billed to your third-party payer.

WILL YOU BE PAID FOR BEING IN THE STUDY?

You will not be paid for being in this study.

WHAT CAN I EXPECT FROM THE RESEARCHERS?

If at any time the researchers find out about unexpected risks or dangers to you or others in the study, they will inform you and may remove you from the study if needed, in accordance with standard medical practice. They will also honor any decision you make to withdraw from the study at any time. Your medical care will not be compromised in any way.

WILL YOUR INFORMATION BE KEPT PRIVATE?

<<Fill in your Site Name>> will keep your information private and follow all research regulations. We will use a code rather than your name to label your information, and we will not identify you in research reports. Your records may be reviewed by study sponsors or the federal Food and Drug Administration, as allowed by research regulations.

Your identity will be kept as confidential as possible as required by law. Except as required by law, you will not be identified by name, social security number, address, telephone number, or any other direct personal identifier outside of NIH StrokeNet.

There is a slight risk in any research study that your personal information could be accidentally released to people who are not supposed to have it.

Your health information will be stored and shared with other researchers. The information will be available for any research question, such as research to understand what causes strokes, or development of new scientific methods.

To further protect your privacy, the researchers have obtained a Certificate of Confidentiality from the Department of Health and Human Services (DHHS). With this certificate, the researchers may not
disclose information (for example by court order or subpoena) that may identify you in any federal, state, or local civil, criminal, administrative, legislative, or other proceedings. Disclosure will be necessary, however, upon request of DHHS for audit or program evaluation purposes.

A Certificate of Confidentiality does not prevent you from voluntarily releasing information about yourself or your involvement in this research.

Even with the Certificate of Confidentiality, if the investigator learns about abuse of a child or elderly person or that you intend to harm yourself or someone else, or about certain communicable diseases, they will report that to the proper authorities. If keeping information private would immediately put you or someone else in danger, the researchers would release information to protect you or another person.

WHOM CAN I CONTACT IF I HAVE QUESTIONS OR CONCERNS?

If you have questions about this research study or to report a research-related injury, you can contact the researcher <<Fill in the name of the PI at your site>> MD at <<Fill in the 24-hour contact number at your site>>.

Please call the StrokeNet Central Institutional Review Board (CIRB) at 513-558-5259 (Monday – Friday 8 am to 5 pm) if you:

- Think the research has hurt you.
- Have questions about giving consent or your rights as a research participant.
- Have questions, concerns, or complaints about the research.
- Cannot reach the research team or you want to talk to someone else.

To report complaints or concerns to an independent agency in an anonymous and confidential manner, please call the Research Compliance Hotline at 1-800-889-1547.

A description of this clinical trial will be available on http://www.ClinicalTrials.gov, as required by U.S. Law. This Web site will not include information that can identify you. At most, the Web site will include a summary of the results. You can search this Web site at any time.
CONSENT
Please print your name, sign, and date below if you agree to be in the study. By signing this consent and authorization form, you will not give up any of your legal rights.

<table>
<thead>
<tr>
<th>Name of Participant (PRINT)</th>
<th>Telephone Number</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Signature of Participant (18 or older and able to consent)</th>
<th>Date</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Signature of Legally Authorized Representative</th>
<th>Date</th>
</tr>
</thead>
</table>

Name of Legally Authorized Representative (PRINT)

<table>
<thead>
<tr>
<th>Relationship to Participant or Authority of Legally Authorized Representative</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Telephone number for Legally Authorized Representative</th>
</tr>
</thead>
</table>

Person Obtaining Consent
I attest that the requirements of informed consent for this research project have been satisfied – that the Experimental Subject’s Bill of Rights, if appropriate, has been provided and that I have discussed the research and explained in non-technical terms all of the information in this consent form, including risks and adverse reactions that may be expected. I encouraged the participant to ask questions and that all questions asked were answered.

<table>
<thead>
<tr>
<th>Signature & Printed Name of Person Obtaining Consent</th>
<th>Date</th>
</tr>
</thead>
</table>
WITNESS STATEMENT:
The participant or LAR is unable to read or sign this consent form because of the following reason:
___ The participant or LAR is illiterate
___ The participant or LAR is visually impaired
___ The participant or LAR is physically unable to sign the consent form. Please describe:
__
Other (please specify):
__
I confirm that I was present as a witness for the consent process for this study. I confirm that the participant named above was read the information in the consent document and that the participant has agreed to take part in the research study.

(Date) (Printed Name of Witness)

(Signature of Witness)

(Date) (Printed Name of Individual Obtaining Consent)

(Signature of Individual Obtaining Consent)

References

32. Barreto AD. Argatroban t-PA Stroke Study (ARTSS) 2 Randomized Trial *Stroke; a journal of cerebral circulation.* 2017;In Press.

