The Future of STAIRS

Louise McCullough, MD/PhD
McGovern Medical School
Huffington Chair Of Neurology
The University of Texas/Memorial Hermann Hospital
Objectives

• To understand what STAIRS is and why it developed

• To identify limitations in current animal models and how to interpret results

• Examples of failed translation and clinical trial design integration
Same concept with a different name?

- STEPS
- RIGOR
- ARRIVE
Stroke therapy academic industry roundtable (STAIR) recommendations-1999

- Addressed rodent and primate studies
- Measure at least two outcomes
- Functional response and infarct volume in the acute (1–3 days) and in more chronic phases (7–30 days)
- Blinding
- Randomization
- Appropriate Statistical Methods
- Reproducibility
- Efficacy in multiple species
- Sex Differences
- Route of administration
- Clinically useful therapeutic window and response (still not good)

STAIRS 2.0 (2009)

- Eliminating randomization and assessment bias
- Defining inclusion/exclusion criteria
- Conducting full power analysis and sample size calculations
- Disclosing potential conflicts of interest
- Sex (again)
- Aging and comorbidities (HTN, DM, high cholesterol)

STEPS 1 and 2 (Cell based therapies)

- Test therapy in multiple strains
- Replication in a second species
- Consideration of age and gender (SEX!)
- Functional outcome (minimum of 1 month)
- Clinically useful therapeutic window and dose response
- Consideration of route of administration (intracerebral or systemic)
- Study ischemic and hemorrhagic stroke subgroups

STEPS II

- Reproducibility in multiple laboratories and in two species
- The possible addition of comorbidities (hypertensive, diabetic)
- “Positive, neutral, and negative” study outcomes should be reported

And still more: RIGOR

- Measured effect (improvement) was larger in studies without randomization
- Measured effect (improvement) was larger in studies without blinded assessment
- Only 36% of published studies reported randomization
- Only 29% of published studies were blinded
- Power analysis documented by 3%
- No significant association between the quality of science and IF
- A significant amount of unpublished negative or neutral data cause an overestimation of efficacy because of published positive data

ARRIVE: What YOU need to KNOW for grants

Experimental design

• Rationale for the selected models and endpoints (animal and/or cellular)
• Adequacy of the controls
• Route and timing of intervention delivery/dosing
• Justification of sample size, including power calculation
• Statistical methods used in analysis and interpretation of results (MUST HAVE POWER!!)
• Get some statistical help!
ARRIVE
Minimizing Bias

- Methods of blinding (allocation concealment and blinded assessment of outcome)
- Strategies for randomization and/or stratification
- Reporting of data missing due to attrition or exclusion
- Reporting of all results (negative and positive)

- http://randomizer.org/
ARRIVE

Results

• Independent validation/replication, if available
• Robustness and reproducibility of the observed results
• Dose–response and therapeutic window results (and permeability)
• Alternative interpretations of the experimental data
• Discussion of effect size in relation to potential clinical impact
• Potential conflicts of interest

Translational studies.....two labs-two species!

Well that was painful......

- Sex
- Stroke Subtype
- Animal Model
- Behavioral assays? What is relevant? Cognition/Mood issues often the major ones for patients.....
- Some examples
Models:
What types of stroke are we mimicking?
Animal Models of Stroke

Traystman, RJ. ILAR Journal 2003 44:85-95
Stroke in Spontaneously Hypertensive Rats

What animal/strain are you using?

C57BL/6 (B6)

BALB/c (BC)
Suture model (intra-luminal occlusion)

MCAo in Rat

Triphenyl-tetrazolium chloride (TTC)
Chronology of Infarct
TTC Stain - Right Hemisphere

% Infarction

Example TTC from 72 hours post-stroke (white = infarcted tissue).
Thromboembolic model

Cerebral Perfusion

- PCB
- PCA
- MCA
- ACA
- ACB
- ICA
- SCA
- VA
- BA
Hemorrhagic transformation (HT) after MCAO: blood marked by arrows-

Clot model MCA clot is stained with Evans Blue (arrows)
Infarct size

Ischemia

Behavioral dysfunction
Cylinder test
Epidemiology of stroke

- 1 in 5 women will have a stroke in her lifetime
- 1 in 6 men will have a stroke in his lifetime
- In most age groups, stroke is more prevalent in men than women*
- More women die after their strokes, are disabled after stroke, and require assistance (SNF placement in over 30%)
- Higher rates of secondary stroke, depression and post-stroke cognitive decline
<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Sex-Specific Risk Factors</th>
<th>Risk Factors That Are Stronger or More Prevalent in Women</th>
<th>Risk Factors That Are Similar in Men and Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pregnancy, preeclampsia, or gestational diabetes</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral contraceptive or postmenopausal hormone use</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Migraine headache with aura</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical inactivity, obesity, or unhealthy</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prior cardiovascular disease</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoking</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The metabolic syndrome</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depression</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychosocial stress</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hormone Therapy-An Example

- Epidemiology showing relative protection against vascular events in women until well after menopause
- Observational studies showing protection in HRT users from both stroke and MI/CAD
- Preclinical/Experimental evidence of robust neuroprotective effects in vivo and in vitro
Estrogen

Intact

Ovx Female
Ischemic stroke risk - WHI hormone trial

Hendrix, S. L. et al. Circulation 2006;113:2425-2434
1. For women with ischemic stroke or TIA, postmenopausal hormone therapy (estrogen with or without a progestin) is not recommended (Class III, Evidence A).

2. Not recommended for primary prevention of CAD or CVD
WHI: Possible Limitations?

• Less than one-third of WHI were between the ages of 50 and 59, and women within a year of menopause were excluded (WHI)

• Older, more frequently diabetic, obese and more likely to smoke than women using HRT in prior observational studies

• HRT in observational studies: treatment early in menopause for control of symptoms (age of 51)

• In WHI HRT was started an average of 12 years after the menopause (mean ages for HRT; 63.3 and ERT; 63.6)
What happens in animals?
Vascular Effects of Early versus Late Postmenopausal Treatment with Estradiol

Howard N. Hodis, M.D., Wendy J. Mack, Ph.D., Victor W. Henderson, M.D., Donna Shoupe, M.D., Matthew J. Budoff, M.D., Juliana Hwang-Levine, Pharm.D., Yanjie Li, M.D., Mei Feng, M.D., Laurie Dustin, M.S., Naoko Kono, M.P.H., Frank Z. Stanczyk, Ph.D., Robert H. Selzer, M.S., Stanley P. Azen, Ph.D., for the ELITE Research Group

N Engl J Med
Volume 374(13):1221-1231
March 31, 2016
CIMT Progression According to Study Group and Postmenopause Stratum.

Issues in the use of animals in pre-clinical research

- Co-morbidities such as diabetes, obesity, high cholesterol, hypertension not modeled
- Lifestyle considerations (smoking, alcohol, pregnancy)
- Mimicking the actual “at risk populations”
- Interaction between risk factors and aging
Age distribution by sex of 502,036 ischemic stroke admissions in the GWTG-Stroke program

Policy: NIH to balance sex in cell and animal studies

http://orwh.od.nih.gov/research/index.asp
Translational Implications

• In 1993, the NIH Revitalization Act required the inclusion of women in NIH-funded clinical research.

• However, inclusion of women is **not required** at phases 1 and 2 of NIH-funded human subject trials when critical safety and dosage issues are addressed (Ambien).

• 80% of the drugs taken off the market between 1997 and 2000 “had disproportionately adverse effects on women.”

• Call for Action for “Sex Balancing” in clinical and **now pre-clinical studies**

www.gao.gov/new.items/d01286r.pdf
Sex differences *in vitro*

- **Male**: (n = 4 from 2 cultures)
- **Female**: (n = 5-8 from 4 cultures)
Sex Differences in OGD-induced Neuronal Injury

<table>
<thead>
<tr>
<th></th>
<th>Basal</th>
<th>24 h</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Basal</th>
<th>24 h</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-OGD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-OGD</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
So who cares?
Does this actually mean anything to the treatment of stroke patients?

Social isolation and stroke

- Clinical studies
 - SI increases risk of mortality
 - SI independently increases stroke risk
 - SI leads to poorer recovery (controlling for NIH etc)
 - Stroke patients with low social support have increased risk of recurrent stroke

Couzin J, Science 2009
Epidemic of Loneliness

• 52% of women live alone compared to 29% for men after age of 80
• Many will have outlived not only spouses/partners but also their friends and children.
• Cardiovascular, nervous and immune targets
Infarct Size was equivalent at 30 and 90 days when SI was delayed 72 hours after stroke.
Mortality

A Kaplan-Meier survival curve is shown, comparing four groups:

- Sham
- SI
- PH-SP
- PH-HP

Significance levels are indicated as:

- P<0.01
- P<0.05
Tail suspension Test at 90d

http://len.brain.riken.jp
Systemic Effects of Stroke

- Peripheral Effects

- Role of Peripheral Leukocytes/Myeloid Cells

- Local Response...

- Aging... T cell deficits? Infections?
Fat in aged versus young mice
Aged mice have smaller infarcts but MUCH worse recovery.
The Composition of Infiltrating Leukocytes After Stroke Differs with Age

Young Sham
Young Stroke
Aged Sham
Aged Stroke

CD11b

CD45

- Young Sham: 20% Ly6G+ Neutrophils, 52% Ly6C+ Monocytes, 28% Ly6G-/Ly6C- Other
- Young Stroke: 20% Ly6G+ Neutrophils, 52% Ly6C+ Monocytes, 28% Ly6G-/Ly6C- Other
- Aged Sham: 48% Ly6G+ Neutrophils, 37% Ly6C+ Monocytes, 15% Ly6G-/Ly6C- Other
- Aged Stroke: 48% Ly6G+ Neutrophils, 37% Ly6C+ Monocytes, 15% Ly6G-/Ly6C- Other

Monocytic
Neutrophilic
High expression of T cell adhesion markers on CD8 T cells in aged in blood and brain compared to young mice
Generating Heterochronic Bone Marrow Chimeras

Young → Young
Old → Young
Young → Old
Old → Old
Aged bone marrow contributes to worse recovery in young mice
Young bone marrow contributes to enhanced recovery in Aged mice
Aged Bone Marrow Contributes to Increased Hemorrhagic Transformation

- **Graph 1:** Distribution of MMP-9 levels in monocytes and neutrophils (Old vs. Young).
- **Graph 2:** Hemoglobin levels (mg/dL) for Sham and Stroke groups (Young vs. Old).
- **Graph 3:** Percentage of hemorrhagic transformation in the ipsilateral hemisphere (Old vs. Young)
Translational Research

- Targeting mechanisms and developing therapies based on preclinical information from young animals may be futile.
- We need better animal models—but these are expensive.
- Validate pre-clinical targets in human populations (IP-10).
- Translation to CLINICAL TRIALS----Better clinical trial design!
- Really helps to have people that know both involved EARLY on in clinical trial design.