Stroke Net Grand Round Webinar

Preconditioning the Brain for Stroke Prevention

April 4, 2019

Sebastian Koch

University of Miami Department of Neurology

Objectives

Our Unique challenges in brain conditioning

Review clinical studies of brain conditioning

O Translational issues for interventional studies

• Discuss our efforts

What about the brain?

Is it possible to precondition the brain?

• Least accessible organ.

• Blood brain barrier?

 Patients with cerebrovascular disease tend to be older.

> Problems with conditioning the aged brain?

Clinical Observations of Human Brain Conditioning

O Pre-myocardial angina may improve cardiac outcomes. (Lorgis 2012)

- Reduced troponin elevation
- Arrhythmia
- Fewer ST segment changes
- Mortality

O Does TIA prior to stroke have a preconditioning effect?

Brain Conditioning with TIA

 TIA prior to ischemic stroke lessens stroke severity and improves functional outcome:

Even if TIA occurred several years prior to index stroke. (Weih 1999)

- Moncayo 2000
 - Lausanne Stroke Registry data in over 2000 patients.
 - Looked at duration and timing of TIAs.
 - TIAs lasting 10-20min improved outcome when compared to TIAs lasting <10min, or 20-40min.
 - TIAs <1 week from stroke more protective than TIAs between 1 week- 1 month, or >1 month before index stroke.

Conditioning with TIA

O Benefit on imaging outcomes as well:

- Assessed the effects of TIA within 72h of index stroke.
- Reduced infarct volume at 4-7 days by brain CT.
- Better functional outcome at 90 days.
- Correlated protection from TIA with a higher TNFα/IL 6.

Castillo 2003)

Conditioning with TIA

O But...not a consistent finding:

- Northern California TIA study
- No effect of prior TIA on stroke outcome and disability.
- Even when assessing different durations of TIA and interval to index stroke
- Unable to confirm the protective effects of TIA on stroke severity

(Johnston 2004)

Clinical Brain Conditioning

Translational Challenges for Interventional Studies

Translational Challenges

Preclinical studies:
 young animals.
 healthy.
 free of medications.

Clinical medicine:
 > older patients.
 > with comorbidities.
 > on medications.

Effect of Age on Conditioning

No preconditioning effect of TIA was demonstrated in elderly (>65 years) patients with stroke. (Della Morte 2008)

O Preclinical models of aged hearts have shown a reduction of the preconditioning effect. (Abete 1996)

Medication Effect on Conditioning

O Acute dosing of lovastatin aborted a preconditioning effect in rat myocardial ischemia model but did not affect postconditioning.

© Chronic lovastatin use did not affect preconditioing but affected postconditioning. (Kocsis 2008)

What Conditioning Method?

What method of conditioning?

- Direct conditioning impractical.
- Limb conditioning
 - Which Limb?
- Pharmacological conditioning?

Clinical Conditioning Methods

• Hauseloy 2007:

 3 x 5min arm conditioning cycles prior to CABG in 57 patients.

◎ 30% reduction in post-operative troponin elevation.

Preclinical Limb

Preconditioning

Study	Stimulus	Animal	Model	Outcome
Vlasov 2005	30-min leg ischemia	Rat	Global ischemia	↑endothelial function ↓ cerebral edema
Jin 2006	3 x 10-min leg ischemia	Rat	Global ischemia	↑pERK1/2 ↓ neuronal loss
Dave 2006	15 and 30-min leg ischemia	Rat	Global ischemia	↓ neuronal loss
Gurcon 2006	5-min renal ischemia	Rabbit	Spinal ischemia	↑function
Sun 2006	3 x 10-min leg ischemia	Rat	Global ischemia	↓ neuronal loss ↑ p38 MAPK expression
Rehni 2007	15-min mesenteric artery occlusion	Mouse	Focal ischemia	↑function ↓ infarct size
Zhao 2007	3 x 10-min leg ischemia	Rat	No cerebral ischemia	↑ serum and hippocampal NO and NOS expression
Ren 2008	5 and 15-min cycles of leg ischemia	Rat	Focal ischemia	↓ infarct size
Malhotra 2011	3x 10-min infra-renal aortic occlusion	Rat	Focal ischemia	↑function ↓ infarct size
Hahn 2011	4 x 10-min leg ischemia (tourniquet)	Rat	Focal Ischemia	↑function ↓ infarct size
pERK= extracellular signal-regulated kinases; NO=nitrous oxide; NOS=NO synthase; MAPK= mitogen- activated protein kinase				

Clinical Cardiac Conditioning

Trial	Clinical Setting	Intervention
Cardiac		
Cheung 2006	Pediatric cardiac surgery	2 cycles of 5 min leg ischemia
Hausenloy 2007	Coronary bypass	3 cycles of 5 min arm ischemia
Ali 2007	Abdominal aneurysm repair	2 cycles of 10 min iliac artery occlusion
Hoole 2009	Coronary angioplasty	3 cycles of 5 min arm ischemia
Rahman 2010	Coronary bypass	3 cycles of 5 min arm ischemia
Thielman 2010	CABG Surgery	3 cycles of 5 min arm ischemia
Wagner 2010	CABG Surgery	3 cycles of 5 min arm ischemia
Ali 2010	CABG Surgery	3 cycles of 5 min arm ischemia
Hong 2012	Off pump CABG Surgery	4 cycles of 5 min arm ischemia

 Preconditioning the Brain What Setting?
 O Carotic endarterectomy or stenting.

• Subarachnoid hemorrhage.

O Coronary artery bypass.

Secondary prevention in high risk patients with TIA/stroke.

Per and Post-conditioning the Brain

• Acute cerebral infarction.

• Cardiac arrest?

• Walsh 2010 & Zhao 2017

Carotid intervention

Koch 2011, Gonzalez 2013

Subarachnoid hemorrhage.

• Meng 2012 & 2015

Symptomatic Intracranial disease.

• Hougard 2013

Ischemic stroke and tPA.

• Zhao 2017:

- 139 participants with high grade carotid stenosis
- Preconditioned for 2 weeks prior to carotid stenting
- 5x 5min cycles of arm conditioning, twice daily
- MRI after showed reduction in lesion volume and number of new lesions (RR~40%)
- No difference in clinical outcomes (but very low event rates)

• Koch 2012:

- Subjects with an eurysmal SAH
- Leg preconditioning every other day from day 4-14
- To ameliorate delayed cerebral ischemia
- Safety and feasibility study
- Escalating durations of limb ischemia
 - **5**, 7.5 and 10minutes
- 2 DVTs in leg preconditioning group
- Safe, feasible and tolerated

• Gonzalez 2013:

- Subjects with aneurysmal SAH.
- Leg preconditioning 4x 5min every other day from day 2-12.
- Assessed metabolic and hemodynamic effects.
 - TCD, microdialysis.
- Transient vasodilation with decrease in MCA TCD velocities.
- Reduction of lactate/pyruvate ratio and glycerol for up to 2 days.

Meng 2012

- 68 patients with symptomatic intracranial stenosis.
- 5 cycles x 5 min arm conditioning twice daily for 300 days vs. control group.
- Outcomes: recurrent stroke, mRS, TCD and SPECT at 90 and 300 days.
- Recurrent stroke at 90 days: 5% vs. 23% (p<0.01)</p>
- Improved functional recovery by mRS 0-1 (p<0.01)</p>
- Improved cerebral perfusion by SPEC1
- Improved TCD blood flow velocities.

O Hougaard 2013:

- Randomized 453 stroke patients who received IV tPA.
- 3x 5 min arm conditioning cycles with start in ambulance.
- Primary endpoint: volume of tissue in PWI/DWI mismatch not progressing to infarction
- No evidence of effect on penumbral salvage and final infarct volume
- No difference in clinical outcomes at 3 months
- But reduced the amount of tissue at risk of infarction
- Reduced admission NIHSS in conditioned subjects (p=0.016).
- More TIAs in conditioned group (p=0.006).

Interventional Studies Conclusion

O Proof on concept and exploratory

Signal of efficacy

• Intervention is safe

 Currently ongoing larger studies in acute ischemic stroke (France, Denmark), and secondary stroke prevention in intracranial disease (China)

Proving the Principle Brain -Limb Conditioning

	Preconditioning	Post-and Perconditioning
Extent of preclinical evidence	+++	+
Shown in multiple organ systems	+++	+
Innovation of approach to cytoprotection	+++	+
Clinical applicability	+	+++

Proving the Principle Brain-Limb Conditioning

	Subarachnoid hemorrhage	Carotid artery stenting / endarterectomy	Cardiac bypass	Secondary stroke prevention
Favorable patient demographics	+++	+	+	+
Ischemic risk over time	+++ 20%	++ 3-6%	+ ~2%	+ 8%
Preconditioning length	++ 14 days	+++ One time	+++ One time	+ Months
Model for ischemia	+	+++	++	+++

Proving the Principle Brain-Limb Conditioning

	Subarachnoid Hemorrhage ¹	Coronary artery bypass surgery ²	Carotid endarterecotmy ³	Secondary Stroke Prevention ⁴
Age (years)	53 ±12	67*	68*	60± 9
Hypertension (%)	42	61	62	29
Smoking (%)	48	65	21	30
Diabetes (%)	3	42	21	24
Ischemic heart disease (%)	1	100	23	Not available

¹ Koch 2012; ² Hausenloy 2007; ³ Walsh 2010; ⁴ Meng 2012

Modified from Koch 2013

Proving the Principle Brain-Limb Conditioning

	Subarachnoid hemorrhage	Carotid artery stenting / endarterectomy	Cardiac bypass	Secondary stroke prevention
Favorable patient demographics	+++	+	+	+
Ischemic risk over time	+++ 20%	++ 3-6%	+ ~2%	+ 8%
Preconditioning Duration	++ 14 days	+++ One time	+++ One time	+ Months
Model for ischemia	+	+++	++	+++

Comments and Opinions

Preconditioning the Human Brain Proving the Principle in Subarachnoid Hemorrhage

Sebastian Koch, MD; Nestor Gonzalez, MD

Stroke. 2013;44:1748-1753; originally published online April 18, 2013; doi: 10.1161/STROKEAHA.111.000773 Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Copyright © 2013 American Heart Association, Inc. All rights reserved. Print ISSN: 0039-2499. Online ISSN: 1524-4628

PreLIMBS IIa

Preconditioning with Limb Ischemia for Subarachnoid Hemorrhages

Safety and Feasibility in SAH

O Biomarker Exploratory Aim

Serum marker, MRI outcomes

⊙ 4 x 5min cycles vs. 3x 10min vs. sham

⊙ Sample size 150 participants, 10 sites

Preconditioning

- Murry 1986 direct preconditioning.
- O Przylenk 1993 regional, remote preconditioning.
- 400 BC Hippocrates- prescribed small doses of mandrake root, which causes mania, to treat mania.
- 16th Paracelsus- what makes a man ill also cures him.
- 18th century- Samuel Hahneman.
 - Diseases should be treated by drugs that cause similar symptoms in humans.
- 19th Nietzsche- what does not kill me makes me stronger.