Disclosures

- Funded Research
 - Nexstim - clinical trial
- Consulting - Tyromotion
Objectives

- Rationale for robot-aided rehabilitation
- Barriers to adoption of robots in clinical practice
- Where are we now in adopting rehabilitation Robotics?
- Identify strengths and limitations of current robotic technologies
- Propose strategies to facilitate clinical integration of robots in rehabilitation
Rehabilitation Robotics Publications

0
200
400
600
800
1000
1200
1400
Rehabilitation Robotics Clinical Trials

From Clinicaltrials.gov on 5/26/17, all studies, n=165. 57 trials currently open.
Upper-Limb Commercially Available Robots in US

<table>
<thead>
<tr>
<th>Workstation</th>
<th>Wearable</th>
<th>Wheelchair-mounted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amadeo (Tyromotion)</td>
<td>MyoPro (Myomo)</td>
<td>Jaco (Kinova)</td>
</tr>
<tr>
<td>Armeo Power (Hocoma)</td>
<td></td>
<td>iARM (Exact Dynamics)</td>
</tr>
<tr>
<td>Armotion (Reha Technology)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand Mentor Pro (Motus Nova)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand of Hope (Rehab-Robotics)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inmotion Arm (Bionik)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inmotion Wrist (Bionik)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inmotion Hand (Bionik)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kinarm (Bkin)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proficio (Barrett)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ReoGo (Motorika)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Robot-ish		
Diego (Tyromotion)		
Armeo Boom and Spring (Hocoma)		
Lower-Limb Commercially Available Robots in US

- Workstation
 - G-EO (Reha Technology)
 - KineAssist-MX (HDT Global)
 - Lokomat (Hocoma)
 - Walkbot (P&S Mechanics)

- Wearable
 - Bionic Leg (AlterG)
 - eLegs (Ekso Bionics)
 - Indego (Parker-Hannifin)
 - ReWalk (ReWalk Robotics)
 - Rex (Rex Bionics)
Bionik Laboratories Reaches Milestone with Shipment of 250th Interactive Robotic Therapy System for Patient Rehabilitation

APRIL 25, 2017
Proposed Robot Applications

- Exercise training devices for hemiparesis
 - Upper Limbs
 - Lower Limbs
- Wearable powered braces for daily use
- ADL assistance for profoundly disabled
- Social/Telepresence robots
Advantages of Robotic Exercise Training?
Avoiding Therapist Fatigue

- CPM for knee replacement as a (non-robotic) example
Engage the patient

* More interesting for the patient
Proposed Cost Savings

- Cost (Labor) savings
 - Deliver same therapy with fewer staff
 - Deliver more therapy without increasing staff

- Cost of personnel is rising while the cost of technology is falling

- 1:1 Model: Most common currently – a staff member is present supervising the session as his/her only activity. No labor savings achieved.

- Robotic gym model: One staff member supervising multiple patients
Economic barriers

- Costs of devices are high, useful life is short
- Devices consume a lot of space
- Devices remain highly specialized, and limited in ability to truly substitute for human therapy
- Complexity of devices generally requires direct supervision of therapy sessions, reducing (or eliminating) labor savings
Can Robots Provide More Effective Therapy than Humans?

- More repetitions than human therapy
- Greater consistency of treatment
- Potentially could provide more effective treatment algorithm than human therapists (not yet convincingly demonstrated)
Optimizing control and training algorithms

- Many devices provide “assist as needed”, but unclear if this is optimal.
- Underlying concept is essentially Hebbian training – that successful execution of a motor task reinforces the underlying neural pathway.
- Other strategies might include error augmentation, resisting the desired movement to make the task harder to accomplish, or inducing adaptation (e.g. pushing a hemiparetic patient towards their unaffected side).
- Encouraging mirrored movements – good or bad for recovery? Or perhaps both (at different stages of recovery)?
Efficacy: VA Robot Study

A. Fugl-Meyer Assessment, Robot vs. Usual Care

Overall mean difference, 2.88 (95% CI, 0.57 to 5.18); P=0.02

B. Fugl-Meyer Assessment, Robot vs. ICT

Overall mean difference, -0.58 (95% CI, -2.97 to 1.81); P=0.63

ARMin study

- Randomized controlled trial
- Robotic vs. dose-matched conventional therapy
- N=73
- Chronic hemiparesis (> 6 months)
- 24 sessions over 8 weeks

Change in FMA-UE score from baseline. Error bars are SD. FMA-UE=arm (upper extremity) section of Fugl-Meyer assessment.

Robotic Efficacy?

- Improvements for upper limb robotic therapy generally in the 2-5 point range on the UEFM
- Comparable to gains seen with other forms of exercise therapy post-stroke
- VA robotic study found no difference between robotic therapy and human-delivered therapy; ARMin study showed slight advantage for robotic therapy
- Evidence for superiority of robotic therapy is lacking
Robotic (Lokomat) vs. Human Gait training

Changes in gait speed at post- and F/U assessments at self-selected velocity (SSV; A) and fast velocity (FV; B)

Hornby, T. G. et al. Stroke 2008;39:1786-1792
Upper vs. Lower Limb Robotics?

<table>
<thead>
<tr>
<th>Upper Limb</th>
<th>Lower Limb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Movement path variable</td>
<td>Movement path predictable</td>
</tr>
<tr>
<td>Movements typically non-rhythmic</td>
<td>Rhythmic</td>
</tr>
<tr>
<td>Typically poor functional outcome in stroke</td>
<td>Typically reasonable functional outcome in stroke</td>
</tr>
<tr>
<td>Some evidence suggests robotic therapy may be better than conventional exercise</td>
<td>No real evidence suggesting benefit over conventional exercise. LEAPS trial suggested little benefit to non-robotic locomotor training</td>
</tr>
</tbody>
</table>
Types of Exercise Robots

By Type of Design:
- Workstation – end effector (e.g. InMotion Shoulder-Elbow robot)
- Workstation – cable driven (e.g. TPAD, Tyromotion Diego)
- Workstation – exoskeletal (e.g. Lokomat, Armeo Power)
- Wearable exoskeletal (e.g. AlterG Bionic Leg, Myomo)
 - Also used as wearable powered braces
- Wearable soft devices

By Limb(s) trained:
- Upper Limb
- Lower Limb
End-Effector Robots

Fresco courtesy of Michaelangelo
MIT-Manus/InMotion Shoulder-Elbow Robot
Exoskeletal Workstations

Photo courtesy of Hocoma
Armeo Power
Lokomat

Video courtesy of Hocoma, Inc.
Limitations of traditional workstation robots

- Expensive
- Large/space consuming
- Substantial mass and inertia
- Lacks inherent compliance
- May be uncomfortable
- Not practical for home use
- Simulated functional tasks, rather than actual
Cable-Driven Workstation

- Cables connected to limb segments, connected to actuator
- More control of segmental movement than end-effector
- Less restrictive and lighter weight than exoskeletal
- Requires frame to orient and guide cables, house actuators
A-TPAD (Agrawal Lab)
Tyromotion Diego

Photo and Video courtesy of Tyromotion
Cable-Driven Workstation Robots

Advantages:
- Lightweight from user’s perspective
- Low-inertia
- Easy to incorporate compliance by inserting springs
- Can incorporate functional tasks

Disadvantages
- Requires external frame – quite large
- Not practical for home use
Myhand – wearable cable-driven hand orthosis

- PI’s: Matei Ciocarlie, PhD (Engineering) and Joel Stein, MD
- Funded by NSF through National Robotics Initiative
- Developing wearable robotic orthosis for use in the home environment for more extensive upper limb exercise/practice
C-Alex
Semi-wearable: Hand of Hope

Rehab-Robotics, Hong Kong
Semi-wearable: Bionik InMotion Ankle robot

Video courtesy of Bionik
Wearable Exoskeletal Exercise Robots

Myomo MyoPro

Photo courtesy of Myomo
Soft Robotics

- Fluidic actuators
- Wearable textiles (Exosuit)

From Conor Walsh Lab (Harvard)
Wearable Robots: Limitations

- Limited degrees of freedom
- Functional abilities remain quite limited
- Control systems are crude (mostly EMG)
- Expensive
- Custom design makes therapeutic trials difficult
- Difficult to don and doff
- Spasticity may interfere with use
Summary: Exercise Robotic Design Factors

- End-effector robots constrain movement less than exoskeletal.
- Exoskeletal robots allow control of all relevant joints, but at the cost of expense, inertia, complexity, and potentially constraining movement excessively.
- Cable-driven robots may require external frame.
- Soft robotics is a new and developing approach, some actuators may not deliver sufficient force.
- Wearable devices may allow incorporating functional tasks into training easily, and allow home practice to maximize robotic training, but generally carry the limitations of exoskeletal devices.
Wearable Powered Braces

- Target Population: SCI
- Relatively predictable impairments
- Stable impairments over time
- Many young individuals who are highly motivated
- Relatively small population (12,000 annually; 250,000 living with SCI)
- Unclear potential for plasticity
ReWalk
(ReWalk Robotics)
Wearable Lower Limb Devices

Ekso ReWalk Indego
Wearable Powered Braces: Barriers

- Cost
- Are these devices “Medically necessary” DME from an insurance company perspective?
- Balance, fall risk
- Complexity
- Durability, reliability
- Battery life
- Difficulty donning/doffing independently
- WC storage, integrating with daily routine for wheelchair users
ADL Assistant Robots

- Wheelchair mounted robotic arms
- May incorporate brain-computer interfaces for neuroprostheses
ADL Assistant Robots

iARM, Exact Dynamics

JACO, Kinova
Brain Computer Interfaces
Fetch and Retrieve Robots
ADL Assistant robots: Barriers

- High cost
- DME insurance limits, “Medical Necessity” definitions
- Limited utility of systems may not reduce need for human caregiver (e.g. to suction a patient’s trachea), assist with toileting
- Control systems remain a weakness, and the use of these devices (e.g. WC mounted robotic arm) demand a lot of attention, cognitive effort, visual-spatial skills, time and effort.
- Neuroprosthetic systems remain in their infancy
- Need robotic engineering to reduce complexity of control tasks
Social/Telepresence Robots

Willow Garage PR2

Telemedicine/Telepresence
Social/Telepresence Robots

- Limited research thus far
- Need to better define target population and goals
- Most systems not designed for rehabilitation populations
Robotic therapy is reasonable to consider to deliver more intensive practice for individuals with moderate to severe upper limb paresis. (IIa, A)

Robot-assisted movement training to improve motor function and mobility after stroke in combination with conventional therapy may be considered. (IIb, A)

Mechanically assisted walking (treadmill, electromechanical gait trainer, robotic device, servomotor) with body weight support may be considered for patients who are nonambulatory or have low ambulatory ability early after stroke. (IIb, A)

Conclusions

- Robots provide a method for providing well-defined, reproducible therapeutic exercise in a potentially labor-saving fashion.

- Advantages of robots for delivery of exercise therapy compared with conventional therapy remain promising but still unproven.

- Robots can be a tool to determine the optimal exercise algorithms.

- Wearable powered braces are a promising approach for patients with paraplegia, but not yet ready for widespread home use, and unclear utility in stroke.

- Better control methods and/or smarter devices are needed for widespread adoption of ADL robots.
For More Information:

Joel Stein, MD
js1165@columbia.edu