DEFUSE and DEFUSE 2

• Patients with Target mismatch profile have a powerful association between reperfusion and favorable clinical outcomes following intravenous tPA:

• And following endovascular therapy:

 MRI Profile and Response to Endovascular Reperfusion After Stroke (DEFUSE 2): A Prospective Cohort study Lancet Neurology, 2013
Target mismatch profile

TMM with successful reperfusion

TMM without successful reperfusion
SWIFT PRIME: Infarct Prediction using RAPID

RAPID ischemic core and hypoperfusion volumes predicted infarct size

- Baseline core predicts infarct volume in reperfusers
- Baseline hypoperfusion predicts infarct in non-reperfusers
- Malignant profile predicts infarct growth despite reperfusion

TMM Patients in DEFUSE 2 (all MRI)

- Median absolute error
 - DWI predicts infarct volume: 8 ml
 - in pts with >90% reperfusion
 - Union DWI + f/u Tmax>6s: 15 ml
 predicts infarct volume

TMM Patients in SWIFT PRIME (80% CT Perfusion, 20% MRI)

- Median absolute error
 - Core predicts infarct volume: 9 ml
 in pts with >90% reperfusion
 - Union core + f/u Tmax>6s: 13 ml
 predicts infarct volume

SWIFT PRIME: Infarct volume strongly correlates with clinical outcome

Albers GW, et al. Stroke, August 2015
DEFUSE 2:
Response to reperfusion is not time-dependent in patients with salvageable tissue

DEFUSE 2:
Response to reperfusion is not time-dependent in patients with salvageable tissue

DEFUSE 2: Response to reperfusion is not time-dependent in patients with salvageable tissue

Initial Growth Rate: Known Onset & M1 Occlusion

Initial Growth Rate: Known Onset & M1 Occlusion

Baseline DWI Volume (ml) vs. Time between Symptom Onset and Baseline MRI (hrs)

DEFUSE 3: Premise

Infarct growth is highly variable

Many patients have salvageable tissue beyond 6 hours

Advanced CT/MR imaging can identify these patients

These patients will benefit from modern endovascular therapies
DEFUSE 3: NIH-funded, prospective, randomized, multi-center, adaptive, blinded endpoint trial

• Paradigm shift
 • From time-based selection to imaging-based selection

• Target population
 • Anterior circulation ischemic stroke; ICA or M1 occlusions (CTA/MRA)
 • Salvageable tissue on CT perfusion or MR diffusion / perfusion
 • Endovascular therapy within 6-16 hours of last known well

• Design
 • 1:1 randomization; standard medical therapy vs. endovascular
 • 45 sites
DEFUSE 3 Protocol

Maarten Lansberg, MD PhD
DEFUSE 3 Protocol Director
Schedule of Events

<table>
<thead>
<tr>
<th>Evaluation</th>
<th>Baseline</th>
<th>24 hours after randomization</th>
<th>5 days or discharge</th>
<th>30 days</th>
<th>90 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informed Consent</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History & Physical</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NIHSS Score</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Modified Rankin Scale</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TOAST subtype</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>NeuroQol</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>MRI or CTP scan</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EKG / Laboratory Evaluation*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adverse Event Assessment</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Inclusion Criteria

1. Signs and symptoms consistent with an acute anterior circulation stroke
2. Age 18-85 years
3. Baseline NIHSSS ≥ 6
 • Remains ≥ 6 immediately prior to randomization
4. Endovascular treatment (femoral puncture) between 6-16 hours of stroke onset*
5. Pre-stroke baseline mRS score 0-2
6. Anticipated life expectancy of ≥ 6 months
7. Patient or Legally Authorized Representative has signed Informed Consent

*Stroke onset: Time of last known at neurologic baseline, including wake-up strokes
Exclusion Criteria

1. Other serious, advanced, or terminal illness
2. Pre-existing neurological or psychiatric disease that would confound the evaluations
3. Participation in another drug or device study
4. Pregnancy
5. Contraindication to MRI/CTP contrast (incl. iodine allergy refractory to pretreatment meds)
6. Treated with tPA >4.5 hrs after time last known well
7. Known hereditary or acquired hemorrhagic diathesis, coagulation factor deficiency; oral anticoagulant with INR > 3 (recent use of new oral anticoagulants ok if eGFR > 30 ml/min)
8. Seizures at stroke onset if precludes obtaining an accurate baseline NIHSS assessment
9. Baseline blood glucose of <50mg/dL (2.78 mmol) or >400mg/dL (22.20 mmol)
10. Baseline platelet count < 50,000/uL
11. Untreatable sustained hypertension (SBP >185 mmHg or DBP >110 mmHg)
12. Presumed septic embolus; suspicion of bacterial endocarditis or cerebral vasculitis
13. Mechanical clot retrieval attempted prior to 6 hrs from symptom onset
Neuroimaging Inclusion Criteria

MRA / CTA reveals
• M1 segment MCA occlusion, or
• ICA occlusion (cervical or intracranial; with or without tandem MCA lesions)

AND

Target Mismatch Profile on CT perfusion or MRI (RAPID)
• Ischemic core volume < 70 mL and
• Mismatch ratio > 1.8 and
• Mismatch volume ≥ 15 mL
Alternative Neuroimaging Criteria

If MR perfusion is technically inadequate:
- DWI lesion volume < 25 mL, and
- ICA or MCA-M1 occlusion on MRA or CTA (within 60 minutes)

If CTA/MRA technically inadequate:
- Tmax >6s perfusion deficit consistent with MCA occlusion, and
- Target Mismatch criteria are met

If CT Perfusion technically inadequate: obtain MRI
Neuroimaging Exclusion Criteria

• ASPECTS < 6 on non-contrast CT

• Evidence of
 • Intracranial tumor (except small meningioma)
 • Acute intracranial hemorrhage
 • Neoplasm
 • Arteriovenous malformation

• Significant mass effect with midline shift

• Evidence of ICA flow-limiting dissection or aortic dissection

• Intracranial stent implanted in the same vascular territory that would preclude safe deployment / removal of neurothrombectomy device

• Intracranial occlusions in multiple vascular territories
Novel Adaptive Design Developed for DEFUSE 3

Adaptive design*

- Based on 2 biological assumptions that outcomes with endovascular therapy are better
 - In patients with smaller ischemic core volumes
 - In patients with faster time-to-treatment
- Accrual shift to subgroup with maximal response at one of two interim analyses (N=200 and 340), maximum sample size = 476

Michael Marks

DEFUSE 3 Endovascular PI
Endovascular Devices

FDA cleared thrombectomy devices will be included:

• Solitaire Device

• TREVO Retriever

• Penumbra system
 • Penumbra Aspiration Pump 115V
 • Penumbra System Separator Flex [026, 032, 041 and 054]
 • Penumbra System MAX
 • Penumbra Pump MAX
Endovascular Protocol

• The use of thrombectomy devices will be accompanied by the use of cervical balloon guide catheter to achieve flow arrest and aspiration or a distal suction thrombectomy catheter.

• If there is a severe stenosis of the common carotid artery or the proximal internal carotid artery, investigators may also use other FDA devices approved for angioplasty or FDA devices approved for stenting of the carotid artery as deemed appropriate.

• The use of adjuvant intra-arterial (IA) thrombolytic medication is prohibited.
Endovascular Protocol

• Based on recently presented data demonstrating that endovascular therapy is substantially less effective in patients treated under general anesthesia conscious sedation will be strongly recommended.

• General anesthesia will be allowed if the patient has a clear contraindication to conscious sedation and the indication for general anesthesia will be recorded in the CRF.
Additional Topics

• RAPID in DEFUSE 3
• Site Selection
• Timeline
• Workflow examples
RAPID in DEFUSE 3

FDA cleared research version of RAPID, (courtesy of iSchemaView) installed at each site to ensure uniformity in:

- Image acquisition
- Processing time
- Image quality
- Physician interpretation
RAPID Software (Stanford / iSchemaView RAPID) Research License from iSchemaView
RAPID in DEFUSE 3

FDA cleared research version of RAPID, (courtesy of iSchemaView) installed at each site to ensure uniformity in:

- Installation
- Research only use
- Images not read by radiology
- Routine processing of standard of care perfusion
DEFUSE 3 Imaging Protocols

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Scan Parameters (3T)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRI</td>
<td>Sequence Scan Parameters (3T) Time of Acquisition (6 min)**</td>
<td></td>
</tr>
<tr>
<td>Localizer</td>
<td>128X256; 28 FOV; 5/5mm, GRE</td>
<td>24 sec</td>
</tr>
<tr>
<td>Calibration</td>
<td></td>
<td>5 sec</td>
</tr>
<tr>
<td>DWI</td>
<td>128x128, 24 FOV, 5/0mm, 30 slices, 1 NEX, R=2; b=0 and 1000 s/mm² over 3 axes, TE/TR=min/7000ms.</td>
<td>25 sec</td>
</tr>
<tr>
<td>GRE</td>
<td>256x192; 24 FOV; 5/0 mm, 30 slices, TE/TR=25/800ms, flip 20, interleaved EPI, 16 shots</td>
<td>27 sec</td>
</tr>
<tr>
<td>MRA intracranial</td>
<td>256x192, 1 mm; 4 slabs, 26 phase-encodes; 6 overlap, 22 FOV, 0.8 rFOV, fractional echo, ZIPx2, ZIPx512, minTE, flowcomp, TR=18ms, flip=18, inferior>superior ramppulse, R=2; 19 MIPS</td>
<td>143 sec</td>
</tr>
<tr>
<td>PWI</td>
<td>128x128; 24 FOV; 5/0 mm, 17 slices, TE/TR=35ms/1800ms, R=2 using 0.1mmol/kg Gadolinium @ 4ml/sec.</td>
<td>108 sec</td>
</tr>
<tr>
<td>CT</td>
<td>(example below for GE VCT; comparable protocols will be used for other scanner models)</td>
<td>5-6 min</td>
</tr>
<tr>
<td>Non-con head</td>
<td>2.5 – 5mm, 40 slices, 120-140kV, 265-290mA</td>
<td>120-180 sec</td>
</tr>
<tr>
<td>CTA</td>
<td>0.625mm, 0.984:1/39.37cm, 120kV, 550mA, inject and observe for 15 sec until contrast concentration in ascending aorta reaches 80HU (smart prep) then the CT gantry moves along with the bolus of the contrast material from the aortic arch up to the apex of the brain in 5 sec.</td>
<td>90 sec</td>
</tr>
<tr>
<td>CTP</td>
<td>22 FOV, 40mm, 8x5mm, 1.8sec time interval, 45 cycles, 80kV, 125mA; 2 runs</td>
<td>90 sec</td>
</tr>
</tbody>
</table>
Site Selection

Objective criteria for site selection:

• Level of interest
• Equipoise
• # of potentially eligible patients
• Availability of CT perfusion or MR perfusion
• Recommendation from RCC
• Competing trials
<table>
<thead>
<tr>
<th>CRITERIA</th>
<th>YES/NO</th>
<th>POINT ALLOCATION</th>
<th>TOTAL/CRT.</th>
<th>JUSTIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Volume</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><20</td>
<td></td>
<td>0</td>
<td></td>
<td>1st Quartile = 20</td>
</tr>
<tr>
<td>20-70</td>
<td></td>
<td>+1</td>
<td></td>
<td>Q1-Q3 captures most centers</td>
</tr>
<tr>
<td>>70</td>
<td></td>
<td>+2</td>
<td></td>
<td>3rd Quartile = 70</td>
</tr>
<tr>
<td>RCC status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCC</td>
<td></td>
<td>+5</td>
<td></td>
<td>Based on pre-selection as RCC by StrokeNET</td>
</tr>
<tr>
<td>Alternative or first site recommended by RCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional sites recommended by RCC</td>
<td></td>
<td>+4</td>
<td></td>
<td>Based on RCC report on team's prior experience</td>
</tr>
<tr>
<td>Imaging</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routine perfusion imaging</td>
<td></td>
<td>+2</td>
<td></td>
<td>Experience and funding</td>
</tr>
<tr>
<td>MRI 24-hour access</td>
<td></td>
<td>+1</td>
<td></td>
<td>Ensure 24/7 screening</td>
</tr>
<tr>
<td>CTP 24-hour access</td>
<td></td>
<td>+1</td>
<td></td>
<td>Ensure 24/7 screen; (AND argument, not OR, vs MRI: ensures access)</td>
</tr>
<tr>
<td>Imaging access 7 days per week</td>
<td></td>
<td>+1</td>
<td></td>
<td>Ensure 24/7 screening</td>
</tr>
<tr>
<td>Equipoise</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipoise 6-8 hours</td>
<td></td>
<td>+1</td>
<td></td>
<td>Confirmed with sites, prerequisite for trial</td>
</tr>
<tr>
<td>Participation in other trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAWN</td>
<td></td>
<td></td>
<td>-5</td>
<td>Protocol similarity major</td>
</tr>
<tr>
<td>POSITIVE</td>
<td></td>
<td></td>
<td>-3</td>
<td>Protocol similarity moderate</td>
</tr>
<tr>
<td>MR WITNESS</td>
<td></td>
<td></td>
<td>-2</td>
<td>Protocol similarity mild</td>
</tr>
</tbody>
</table>
Additional Topics

• Timeline
 • Central IRB
 • Central Contracting
 • RAPID installation
 • Web DCU
 • Investigator training

• Workflow examples
Workflow in DEFUSE 3

69 yo male transferred to DEFUSE 3 site 7 hours after onset; NIHSS 16; CT negative at outside hospital

- No clinical exclusions for DEFUSE 3
- Consent form signed - enroll patient in WebDCU
- Stroke MRI performed
 - DWI ASPECTS 7
 - MRA R ICA occlusion
 - MR perfusion performed (sent to RAPID; site does not do clinical perfusion imaging)

Review RAPID results

Randomize patient in WebDCU
Workflow in DEFUSE 3

79 yo female arrive to ER at 8 am; last seen well 10 pm last night NIHSS 17

• Stroke CT performed immediately upon ER arrival
 Non con CT- ASPECTS 8
 CTA L MCA occlusion
 CTP performed (images autosent to RAPID + routine clinical CTP processing)

• Patient meets DEFUSE 3 clinical inclusion criteria

• Consent form signed

• Enroll patient in WebDCU
 Review RAPID results to confirm
 Target mismatch profile

Randomize patient in WebDCU
Workflow in DEFUSE 3

63 yo male transferred to DEFUSE 3 site 12 hours after onset; NIHSS 21

- No clinical exclusions for DEFUSE 3
- Consent form signed - enroll patient in WebDCU
- Stroke MRI performed
 - DWI ASPECTS 6
 - L MRA MCA occlusion
 - MR perfusion performed (sent to RAPID; routine clinical perfusion processing)

Review RAPID results

DO NOT randomize patient in WebDCU
Stephanie Kemp

DEFUSE 3 Project Manager
1993 ➔ Joined Stanford Stroke Center

1993 ➔ CRC / Program Manager

2000 ➔ ➔ ➔ ➔ ➔ 2015

2000 ➔ PROJECT MANAGER

DEFUSE ➔ DEFUSE 2 ➔ CRISP ➔ DEFUSE 3
What will I do for DEFUSE 3?

• Assist with the execution of Rapid License Agreements at Clinical Performing Sites
• Develop and provide the training for the clinical trial nurses/coordinators at the clinical sites.
• Perform site Initiation visits (on-site study orientation and training)
• Be available throughout the duration of the study, for nursing/coordinator questions related to the study
Judith Spilker

Project Manager (NCC)
NCC Project Manager Responsibilities

• trial-wide communication
• orchestration of required training activities with Stanford PM
• coordination of and assistance with site assessment and/or initiation visits with Stanford PM
• collection and review of trial related regulatory documents
• recruitment performance tracking and site performance analysis
• primary contact for sites for non-data entry issues

• Collaborates with Contracts Manager at the NCC to develop and execute a DEFUSE 3 Protocol Trial Agreement (PTA) for both network and non-network performance sites
• The NCC financial analyst to track and issue payments to all sites.
Documents to have in place prior to enrollment

• RAPID License agreement between iSchemaView and the Clinical Performance Site (October 2015 onward)

• Subaward from Stanford Univ. to the Univ. of Cincinnati to enable Protocol Trial Agreements (October – November 2015)

• Protocol Trial Agreements (PTAs) between the Univ. of Cincinnati (NCC) and the DEFUSE 3 Clinical Performance Sites or other institutions as defined in the MTA. (November – January for initial roll out)
Regarding Per Patient Budgets

• This is a fixed fee per patient clinical trial.
 • Endovascular arm-$6307.40
 • Medical Management Arm $6,023.40

(Allocation of funds for specific trial tasks /costs can be used at the sites discretion)

• The budgets were set and approved by NINDS when the proposal went in and was awarded. There is no extra money for additional overhead in the award.

• The NIH StrokeNet used the 25 Regional Coordinating Center on-campus and off-campus rates. We calculated an average of both and averaged those two numbers to get the 42%.
Use of RAPID software in DEFUSE 3

• Each clinical performance site will run the perfusion data on their standard CT imaging software from manufacturer. These data are what is processed and read by their radiologist “as standard of care.” Clinical performance sites can (but are not required) purchase the RAPID software which is an added software that further processes the perfusion data from their machine.

• In DEFUSE 3, the CTP data from the Clinical performance site imaging machine is separately routed through a research version of RAPID and then centrally to Stanford. Radiology physician staff at the site never sees or reads the RAPID CTP data. They can’t use it clinically. No RAPID data goes back to the PACS system. RAPID data comes back to investigator only to make the enrollment decision.

• Thus, Clinical performance sites can not have CT perfusion be their standard of care using the research version of RAPID since they use/read their own clinical imaging perfusion data. There is no incentive or need to buy RAPID software to be used in DEFUSE 3 as standard of care.
CIRB Approvals –Parent and Children

1. Readiness Review-(2 week turn around) local review of Protocol and ICF template, insertion of local language into ICF(COI, injury compensation, contact information) and initiate local site ancillary reviews. Local site context form needs to be returned to CIRB.

2. Child site CIRB review and approval- may require contingencies to be addressed rapidly at the site. All approvals and ICFs stored on WebDCU.

3. Annual continuing review requiring site participation. CIRB minutes posted on WebDCU.

Required Child site Documents Checklist

<table>
<thead>
<tr>
<th>Document</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Site Context Sheet (study specific)</td>
<td>will be provided to sites and needs IRB review and input.</td>
</tr>
<tr>
<td>Site information sheet</td>
<td>as available in WebDCU™</td>
</tr>
<tr>
<td>FWA</td>
<td>verify most current version at NCC</td>
</tr>
<tr>
<td>Reliance Agreement</td>
<td></td>
</tr>
<tr>
<td>ePAS Assurance Statement</td>
<td>signed by site PI</td>
</tr>
<tr>
<td>Informed consent document</td>
<td>(complete unlocked sections of template)</td>
</tr>
<tr>
<td>HIPAA authorization language</td>
<td>(in consent or provide if standalone)</td>
</tr>
<tr>
<td>Study Team Listing (key personnel)</td>
<td>(Delegation of Authority Log) in WebDCU™</td>
</tr>
<tr>
<td>CIRB fCOI forms for study team</td>
<td>sites to enter into WebDCU</td>
</tr>
<tr>
<td>HSP training certification for study team</td>
<td>sites to enter into WebDCU</td>
</tr>
<tr>
<td>CV’s</td>
<td>Site PI / Site Co-PI</td>
</tr>
<tr>
<td>HIPAA training study team</td>
<td>sites to enter into WebDCU</td>
</tr>
<tr>
<td>Recruitment Materials</td>
<td>must be CIRB approved if site developed</td>
</tr>
</tbody>
</table>
Clinical Performance Site startup... and Enrollment

- PPI site approval- resources (machines and people) to do the work are available
- Site PTAs and Licensing agreements are completed
- Child site readiness review, child submissions and approval
- Complete Regulatory document collection in WebDCU™
- The tools to train designated personnel are finalized and site training has taken place
- Electronic CRFs and database is ready to randomize and enroll
- RAPID technology is in place and operational
Avoid walking in a straight line and begin to process in Parallel.

- Know your institutional contracting requirements and contacts - find the road blocks and plan for them.
- Know your local IRB review requirements, work closely with them to meet turn around times. Written documentation of this review is required.
- Be open and ready for “site visits” and site training. Anticipate late 2015 or early 2016.
Yuko Palesch

Principal Investigator: Data Management Center
National Data Management Center (NDMC)
NDMC DEFUSE 3 Study Team

Daniel Huang, Database Programmer
Adam Henry, Data Manager
Catherine Dillon, Operations Dir
Sharon Yeatts, Unblinded Statistician
Jessica Simons, Project Manager

Sara Williams, Data Manager
TBD, Statistical Programmer
NDMC DEFUSE 3 Work Scope

- **Pre-Implementation**
 - Protocol, CRF, and SAP development
 - Study database setup in WebDCU™
 - Integration of randomization into WebDCU™

- **Implementation**
 - Data management and QA
 - Site Monitoring
 - Interim reports and analyses
 - Interaction with DSMB as unblinded statistician
 - Represent NDMC on the DEFUSE-3 Exec Committee

- **Post-Implementation**
 - Database lock
 - Analyses and publications/presentations
 - Submission of Public Use Data Sets (PUDS)
WebDCU™ - A One-Stop Shop

We manage:
- CRF Data
- Study Subjects
- Clinical Sites
- Overall Project
- and the StrokeNet
DEFUSE 3 Leadership

Stanford
Principal Investigator Greg Albers
Co-Principal Investigator Michael Marks
Protocol Director Maarten Lansberg
Project manager Stephanie Kemp
Blinded Statistician Phil Lavori
Perfusion Imaging Soren Christensen
Imaging Core Lab Max Wintermark

National Coordinating Center
Principal Investigator Joe Broderick
Project manager Judy Spilker

Data Management Center
Principal Investigator Yuko Palesch
Unblinded Statistician Sharon Yeatts
Executive Committee / Endovascular Committee*
Greg Albers
Joe Broderick
Colin Derdyn*
Scott Hamilton
Stephanie Kemp
Maarten Lansberg
Helmi Lutsep
Michael Marks*
Claudia Moy
Yuko Palesch
Peter Rasmussen*
Wade Smith
Judy Spilker
Tom Tomsick*
Max Wintermark
Sharon Yeatts
Sam Zaidat*